期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rapid metabolic fingerprinting with the aid of chemometric models to identify authenticity of natural medicines: Turmeric, Ocimum, and Withania somnifera study
1
作者 Samreen Khan Abhishek Kumar Rai +8 位作者 Anjali Singh Saudan Singh Basant Kumar Dubey raj kishori lal Arvind Singh Negi Nicholas Birse Prabodh Kumar Trivedi Christopher T.Elliott Ratnasekhar Ch 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第9期1041-1057,共17页
Herbal medicines are popular natural medicines that have been used for decades.The use of alternative medicines continues to expand rapidly across the world.The World Health Organization suggests that quality assessme... Herbal medicines are popular natural medicines that have been used for decades.The use of alternative medicines continues to expand rapidly across the world.The World Health Organization suggests that quality assessment of natural medicines is essential for any therapeutic or health care applications,as their therapeutic potential varies between different geographic origins,plant species,and varieties.Classification of herbal medicines based on a limited number of secondary metabolites is not an ideal approach.Their quality should be considered based on a complete metabolic profile,as their pharmacological activity is not due to a few specific secondary metabolites but rather a larger group of bioactive compounds.A holistic and integrative approach using rapid and nondestructive analytical strategies for the screening of herbal medicines is required for robust characterization.In this study,a rapid and effective quality assessment system for geographical traceability,species,and variety-specific authenticity of the widely used natural medicines turmeric,Ocimum,and Withania somnifera was investigated using Fourier transform near-infrared(FT-NIR)spectroscopy-based metabolic fingerprinting.Four different geographical origins of turmeric,five different Ocimum species,and three different varieties of roots and leaves of Withania somnifera were studied with the aid of machine learning approaches.Extremely good discrimination(R^(2)>0.98,Q^(2)>0.97,and accuracy=1.0)with sensitivity and specificity of 100%was achieved using this metabolic fingerprinting strategy.Our study demonstrated that FT-NIR-based rapid metabolic fingerprinting can be used as a robust analytical method to authenticate several important medicinal herbs. 展开更多
关键词 Rapid metabolic fingerprinting Natural medicines FT-NIR Chemometric models
下载PDF
Genetic Variability in Germplasm Accessions of <i>Capsicum annuum</i>L
2
作者 Shrilekha Misra raj kishori lal +1 位作者 Mahendra Pandurang Darokar Suman Preet Singh Khanuja 《American Journal of Plant Sciences》 2011年第5期629-635,共7页
Capsicum annuum is the most widely cultivated species of peppers (chilies) in the world. For culinary purposes, its fruits are used for pungency (capsaicin) and also color (capsanthin). Capsaicin is also used for medi... Capsicum annuum is the most widely cultivated species of peppers (chilies) in the world. For culinary purposes, its fruits are used for pungency (capsaicin) and also color (capsanthin). Capsaicin is also used for medicinal purposes particularly in anti-inflammatory formulations. Genetic divergence among 38 accessions collected from diverse locations in India (28 from Uttar Pradesh, 5 from Assam, 3 from Maharashtra and 2 from Uttaranchal), was estimated from the data pooled over 3 consecutive years for 15 morphological, growth and chemotypic characters that included days to first and second flowering, fruit onset, plant height, primary, secondary and tertiary branches, leaf surface area, fruit length and diameter, fruit surface area, fresh and dry fruit weight, capsaicin and capsanthin content. Based on this characterization the plants could be grouped into 7 clusters wherein substantial diversity among accessions was indicated by the wide range of D2 values (752.901 - 1918683.00). Accessions with distinct identity were marked, which are likely to be quite suitable for breeding through hybridization combining desirable traits. The accessions labeled number 38, 27, 26, 14 and 24 to high capsaicin content (%);35, 23, 3, 16, 29 and 11 for high capsanthin content (%) and 26 and 27 for dual purpose had characteristics desirable. Above accessions could be utilized in hybridization programme for C. annuum crop improvement. 展开更多
关键词 Genetic Diversity CAPSICUM Annuum CAPSAICIN and Capsanthin Content Recombination Breeding Geographical Distribution
下载PDF
Genetic Variability and Elite Line Selection for High Essential Oil and Nepetalactone Content in Catmint (<i>Nepeta cataria</i>L.)
3
作者 Abhilasha Srivastava Soni Gupta +4 位作者 Swati Singh Ram Swaroop Verma Ramesh Kumar Srivastava Anil Kumar Gupta raj kishori lal 《American Journal of Plant Sciences》 2021年第7期1135-1154,共20页
<i><span style="font-family:Verdana;">Nepeta cataria</span></i><span style="font-family:Verdana;"> L.</span><span style="font-family:Verdana;">, ... <i><span style="font-family:Verdana;">Nepeta cataria</span></i><span style="font-family:Verdana;"> L.</span><span style="font-family:Verdana;">, commonly known as catmint or catnip, belongs to the family </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Lamiaceae</span><span style="font-family:Verdana;">”</span><span style="font-family:""><span style="font-family:Verdana;"> and is indigenous to Europe and Asia. The essential oil of this species is known for the richness and diversity of nepetalactones (NPL) which are used as mosquito/insect repellents in perfumery and cosmetic industries. Reports on Indian catmint germplasm are very meager and warrants exploration of its commercial potential as a natural, non-toxic source of insect repellents. With this objective, commercial open-pollinated seeds of catmint collected from its native, temperate habitat in Himalayas were introduced in the tropical plains. Subsequent to adaptation to a new zone we were able to isolate nineteen individual plants based on plant growth. Hydrodistillation of the fresh herb yielded essential oil in the range of 0.01% to 0.2%. Gas Chromatography (GC) and GC-Mass Spectrometry (GC-MS) analyses of the oil revealed the dominance of monoterpene hydrocarbon, namely, </span><b><span style="font-family:Verdana;">4aα,7α,7aα NPL</span></b><span style="font-family:Verdana;"> (1) isomer (84%). The other two isomers of nepetalactone, </span><b><span style="font-family:Verdana;">4aα,7α,7aβ NPL</span></b><span style="font-family:Verdana;"> (2) and </span><b><span style="font-family:Verdana;">4aα,7β,7aα NPL</span></b><span style="font-family:Verdana;"> (3) were also present, although in very </span></span><span style="font-family:Verdana;">less</span><span style="font-family:"color:red;"> </span><span style="font-family:""><span style="font-family:Verdana;">amounts (1.0% and 1.6%, respectively). Sesquiterpenes identified were α-humulene (traces), (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">)-caryophyllene (0.6%) and caryophyllene oxide (1.7%). We compared the identified Indian catmint chemotype with the other oils from temperate, sub-tropical and tropical locations based on literature search. The Indian chemotype was found to be similar to the oils from Burundi, France, Turkey, UK and USA, mainly due to more accumulation of </span><b><span style="font-family:Verdana;">4aα,7α,7aα NPL</span></b><span style="font-family:Verdana;"> (1) isomer. These oils</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">grouped together in Principal Component Analysis. Breeding lines are presently being developed to improve yield related traits in this plant. Multidisciplinary R&D efforts along with setting up industry related guidelines are required to successfully commercialize catmint cultivation. Several species of </span><i><span style="font-family:Verdana;">Nepeta</span></i><span style="font-family:Verdana;"> genus have high nepetalactone content too and their potential as a commercial source of these isomers still needs to be explored. 展开更多
关键词 Gas Chromatography-Mass Spectrometry Genetic Improvement Half-Sib Selection Insect Repellent Principal Component Analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部