Previous studies have demonstrated a bidirectional relationship between inflammation and depression.Activation of the nucleotide-binding oligomerization domain,leucine-rich repeat,and NLR family pyrin domain-containin...Previous studies have demonstrated a bidirectional relationship between inflammation and depression.Activation of the nucleotide-binding oligomerization domain,leucine-rich repeat,and NLR family pyrin domain-containing 3(NLRP3)inflammasomes is closely related to the pathogenesis of various neurological diseases.In patients with major depressive disorder,NLRP3 inflammasome levels are significantly elevated.Understanding the role that NLRP3 inflammasome-mediated neuroinflammation plays in the pathogenesis of depression may be beneficial for future therapeutic strategies.In this review,we aimed to elucidate the mechanisms that lead to the activation of the NLRP3 inflammasome in depression as well as to provide insight into therapeutic strategies that target the NLRP3 inflammasome.Moreover,we outlined various therapeutic strategies that target the NLRP3 inflammasome,including NLRP3 inflammatory pathway inhibitors,natural compounds,and other therapeutic compounds that have been shown to be effective in treating depression.Additionally,we summarized the application of NLRP3 inflammasome inhibitors in clinical trials related to depression.Currently,there is a scarcity of clinical trials dedicated to investigating the applications of NLRP3 inflammasome inhibitors in depression treatment.The modulation of NLRP3 inflammasomes in microglia holds promise for the management of depression.Further investigations are necessary to ascertain the efficacy and safety of these therapeutic approaches as potential novel antidepressant treatments.展开更多
The rice MtN3/saliva/SWEET gene family consists of 21 paralogs. However, their functions in physiological processes are largely unknown, although at least three of the 21 paralogs are used by pathogenic bacteria to in...The rice MtN3/saliva/SWEET gene family consists of 21 paralogs. However, their functions in physiological processes are largely unknown, although at least three of the 21 paralogs are used by pathogenic bacteria to infect rice. Here, we report the evolutionary features, transcriptional characteristics, and putative functions in sugar transport of this gene family. The wild rice accessions in this study included those with AA, BB, CC, BBCC, CCDD, EE, and GG genomes, which appeared approximately 0.58-14.6 million years ago. The structures, chromosomal locations, phylogenetic relationships, and homologous distribution among the accessions suggest that the number of rice MtN3/saliva/SWEET paralogs gradual y increased as the Oryza genus evolved, and one third of the paralogs may have originated recently. These paralogs are differentially expressed in vegetative and reproductive tissues, in the leaf senescence process, and in signaling dependent on gibberel ic acid, cytokinin, or 1-naphthalene acetic acid (an analog of auxin), suggesting that they may be associated with multiple physiological processes. Four paralogs could transport galactose in yeast, which suggests that they may have a similar function in rice. These results will help to elucidate their roles and biochemical functions in rice development, adaptation to environment, host-pathogen interaction, and so forth.展开更多
基金supported by Health Commission of Pudong New Area Health and Family Planning Scientific Research Project,No.PW2020E-4(to GL)Siming Youth Fund Project of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,No.SGKJ-202119(to RH)+5 种基金Medical Innovation Research Special Project of 2021“Science and Technology Innovation Action Plan”of Shanghai,No.21Y21920200(to GL)Shanghai Rising-Star Program and Shanghai Sailing Program,No.23YF1418200(to QH)Shanghai Municipal Health Commission Foundation grant,No.20234Y0294(to QH)Hundred Teacher Talent Program of Shanghai University of Medicine and Health Sciences,No.A1-2601-23-311007-21(to QH)the Scientific and Technological Innovation Program of Higher Education Institution in Shanxi,No.2021L350(to XC)the Fundamental Research Program of Shanxi Province,No.20210302124194(to XC).
文摘Previous studies have demonstrated a bidirectional relationship between inflammation and depression.Activation of the nucleotide-binding oligomerization domain,leucine-rich repeat,and NLR family pyrin domain-containing 3(NLRP3)inflammasomes is closely related to the pathogenesis of various neurological diseases.In patients with major depressive disorder,NLRP3 inflammasome levels are significantly elevated.Understanding the role that NLRP3 inflammasome-mediated neuroinflammation plays in the pathogenesis of depression may be beneficial for future therapeutic strategies.In this review,we aimed to elucidate the mechanisms that lead to the activation of the NLRP3 inflammasome in depression as well as to provide insight into therapeutic strategies that target the NLRP3 inflammasome.Moreover,we outlined various therapeutic strategies that target the NLRP3 inflammasome,including NLRP3 inflammatory pathway inhibitors,natural compounds,and other therapeutic compounds that have been shown to be effective in treating depression.Additionally,we summarized the application of NLRP3 inflammasome inhibitors in clinical trials related to depression.Currently,there is a scarcity of clinical trials dedicated to investigating the applications of NLRP3 inflammasome inhibitors in depression treatment.The modulation of NLRP3 inflammasomes in microglia holds promise for the management of depression.Further investigations are necessary to ascertain the efficacy and safety of these therapeutic approaches as potential novel antidepressant treatments.
基金supported by grants from the National Program of High Technology Development of China (2012AA10A303)the National Natural Science Foundation of China (J1103510)the Fundamental Research Funds for the Central Universities (2011QC068)
文摘The rice MtN3/saliva/SWEET gene family consists of 21 paralogs. However, their functions in physiological processes are largely unknown, although at least three of the 21 paralogs are used by pathogenic bacteria to infect rice. Here, we report the evolutionary features, transcriptional characteristics, and putative functions in sugar transport of this gene family. The wild rice accessions in this study included those with AA, BB, CC, BBCC, CCDD, EE, and GG genomes, which appeared approximately 0.58-14.6 million years ago. The structures, chromosomal locations, phylogenetic relationships, and homologous distribution among the accessions suggest that the number of rice MtN3/saliva/SWEET paralogs gradual y increased as the Oryza genus evolved, and one third of the paralogs may have originated recently. These paralogs are differentially expressed in vegetative and reproductive tissues, in the leaf senescence process, and in signaling dependent on gibberel ic acid, cytokinin, or 1-naphthalene acetic acid (an analog of auxin), suggesting that they may be associated with multiple physiological processes. Four paralogs could transport galactose in yeast, which suggests that they may have a similar function in rice. These results will help to elucidate their roles and biochemical functions in rice development, adaptation to environment, host-pathogen interaction, and so forth.