Atrial fibrillation is the most common arrhythmia and in symptomatic patients with a drug-refractory form,catheter ablation aimed at electrically disconnecting the pulmonary veins(PVs) has proved more effective than u...Atrial fibrillation is the most common arrhythmia and in symptomatic patients with a drug-refractory form,catheter ablation aimed at electrically disconnecting the pulmonary veins(PVs) has proved more effective than use of antiarrhythmic drugs in maintaining sinus rhythm during follow-up.On the other hand,this ablation procedure is complex,requires specific training and adequate clinical experience.A main challenge is represented by the need for accurate sequential positioning of the ablation catheter around each veno-atrial junction to deliver point-by-point radiofrequency energy applications in order to achieve complete and persistent electrical disconnection of the PVs.Imaging integration is a new technology that enables guidance during this procedure by showing a three-dimensional,pre-acquired computed tomography or magnetic resonance image and the relative real-time position of the ablation catheter on the screen of the electroanatomic system.Reports in the literature suggest that imaging integration provides accurate visual information with improvement in the procedure parameters and/or clinical outcomes of the procedure.展开更多
Over the last decades, the concern for the radiation injury hazard to the patients and the professional staff has increased in the medical community. Since there is no magnitude of radiation exposure that is known to ...Over the last decades, the concern for the radiation injury hazard to the patients and the professional staff has increased in the medical community. Since there is no magnitude of radiation exposure that is known to be completely safe, the use of ionizing radiation during medical diagnostic or interventional procedures should be as low as reasonably achievable(ALARA principle). Nevertheless, in cardiovascular medicine, radiation exposure for coronary percutaneous interventions or catheter ablation of cardiac arrhythmias may be high: for ablation of a complex arrhythmia, such as atrial fibrillation, the mean dose can be > 15 m Sv and in some cases > 50 m Sv. In interventional electrophysiology, although fluoroscopy has been widely used since the beginning to navigate catheters in the heart and the vessels and to monitor their position, the procedure is not based on fluoroscopic imaging. Therefore, nonfluoroscopic three-dimensional systems can be used to navigate electrophysiology catheters in the heart with no or minimal use of fluoroscopy. Although zerofluoroscopy procedures are feasible in limited series, there may be difficulties in using no fluoroscopy on a routine basis. Currently, a significant reduction in radiation exposure towards near zero-fluoroscopy procedures seems a simpler task to achieve, especially in ablation of complex arrhythmias, such as atrial fibrillation. The data reported in the literature suggest the following three considerations. First, the use of the non-fluoroscopic systems is associated with a consistent reduction in radiation exposure in multiple centers: the more sophisticated and reliable this technology is, the higher the reduction in radiation exposure. Second, the use of these systems does not automatically lead to reduction of radiation exposure, but an optimized workflow should be developed and adopted for a safe non-fluoroscopic navigation of catheters. Third, at any level of expertise, there is a specific learning curve for the operators in the non-fluoroscopic manipulation of catheters; however, the learning curve is shorter for more experienced operators compared to less experienced operators.展开更多
In patients with structural heart disease, ventricular tachycardia (VT) worsens the clinical condition and may severely affect the shortand long-term prognosis. Several therapeutic options can be considered for the ma...In patients with structural heart disease, ventricular tachycardia (VT) worsens the clinical condition and may severely affect the shortand long-term prognosis. Several therapeutic options can be considered for the management of this arrhythmia. Among others, catheter ablation, a closed-chest therapy, can prevent arrhythmia recurrences by abolishing the arrhythmogenic substrate. Over the last two decades, different techniques have been developed for an effective approach to both tolerated and untolerated VTs. The clinical outcome of patients undergoing ablation has been evaluated in multiple studies. This editorial gives an overview of the role, methodology, clinical outcome and innovative approaches in catheter ablation of VT.展开更多
文摘Atrial fibrillation is the most common arrhythmia and in symptomatic patients with a drug-refractory form,catheter ablation aimed at electrically disconnecting the pulmonary veins(PVs) has proved more effective than use of antiarrhythmic drugs in maintaining sinus rhythm during follow-up.On the other hand,this ablation procedure is complex,requires specific training and adequate clinical experience.A main challenge is represented by the need for accurate sequential positioning of the ablation catheter around each veno-atrial junction to deliver point-by-point radiofrequency energy applications in order to achieve complete and persistent electrical disconnection of the PVs.Imaging integration is a new technology that enables guidance during this procedure by showing a three-dimensional,pre-acquired computed tomography or magnetic resonance image and the relative real-time position of the ablation catheter on the screen of the electroanatomic system.Reports in the literature suggest that imaging integration provides accurate visual information with improvement in the procedure parameters and/or clinical outcomes of the procedure.
文摘Over the last decades, the concern for the radiation injury hazard to the patients and the professional staff has increased in the medical community. Since there is no magnitude of radiation exposure that is known to be completely safe, the use of ionizing radiation during medical diagnostic or interventional procedures should be as low as reasonably achievable(ALARA principle). Nevertheless, in cardiovascular medicine, radiation exposure for coronary percutaneous interventions or catheter ablation of cardiac arrhythmias may be high: for ablation of a complex arrhythmia, such as atrial fibrillation, the mean dose can be > 15 m Sv and in some cases > 50 m Sv. In interventional electrophysiology, although fluoroscopy has been widely used since the beginning to navigate catheters in the heart and the vessels and to monitor their position, the procedure is not based on fluoroscopic imaging. Therefore, nonfluoroscopic three-dimensional systems can be used to navigate electrophysiology catheters in the heart with no or minimal use of fluoroscopy. Although zerofluoroscopy procedures are feasible in limited series, there may be difficulties in using no fluoroscopy on a routine basis. Currently, a significant reduction in radiation exposure towards near zero-fluoroscopy procedures seems a simpler task to achieve, especially in ablation of complex arrhythmias, such as atrial fibrillation. The data reported in the literature suggest the following three considerations. First, the use of the non-fluoroscopic systems is associated with a consistent reduction in radiation exposure in multiple centers: the more sophisticated and reliable this technology is, the higher the reduction in radiation exposure. Second, the use of these systems does not automatically lead to reduction of radiation exposure, but an optimized workflow should be developed and adopted for a safe non-fluoroscopic navigation of catheters. Third, at any level of expertise, there is a specific learning curve for the operators in the non-fluoroscopic manipulation of catheters; however, the learning curve is shorter for more experienced operators compared to less experienced operators.
文摘In patients with structural heart disease, ventricular tachycardia (VT) worsens the clinical condition and may severely affect the shortand long-term prognosis. Several therapeutic options can be considered for the management of this arrhythmia. Among others, catheter ablation, a closed-chest therapy, can prevent arrhythmia recurrences by abolishing the arrhythmogenic substrate. Over the last two decades, different techniques have been developed for an effective approach to both tolerated and untolerated VTs. The clinical outcome of patients undergoing ablation has been evaluated in multiple studies. This editorial gives an overview of the role, methodology, clinical outcome and innovative approaches in catheter ablation of VT.