used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well a...used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well as comparing with the heptakis(2.3、6-tri-O-pentyl)-β-cyclodextrin and thedibenzo-18-crown-6 used as individual stationary phase、the synergistic effects were observed.These effects were affected by the column temperature.mixed ratio and linear velocity of carrier gas.展开更多
The reduction of 4-nitrophenol catalyzed by nitroreductase in the presence of NADH was investigated in this paper. 4-Amino- phenol and 4-hydroxylamino-phenol were found in the reductive products. The relationship betw...The reduction of 4-nitrophenol catalyzed by nitroreductase in the presence of NADH was investigated in this paper. 4-Amino- phenol and 4-hydroxylamino-phenol were found in the reductive products. The relationship between reaction time and the reductive ratio were studied. The similar reducing ratios of 4-nitrophenol were obtained under aerobic and anaerobic conditions. The results indicated that an oxygen-insensitive reaction was proceeded in the reduction of 4-nitrophenol and nitroreductase was an oxygeninsensitive enzyme. The reductive products of 4-nitrophenol were determined by HPLC and MS.展开更多
An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included...An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carded out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.展开更多
文摘used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well as comparing with the heptakis(2.3、6-tri-O-pentyl)-β-cyclodextrin and thedibenzo-18-crown-6 used as individual stationary phase、the synergistic effects were observed.These effects were affected by the column temperature.mixed ratio and linear velocity of carrier gas.
文摘The reduction of 4-nitrophenol catalyzed by nitroreductase in the presence of NADH was investigated in this paper. 4-Amino- phenol and 4-hydroxylamino-phenol were found in the reductive products. The relationship between reaction time and the reductive ratio were studied. The similar reducing ratios of 4-nitrophenol were obtained under aerobic and anaerobic conditions. The results indicated that an oxygen-insensitive reaction was proceeded in the reduction of 4-nitrophenol and nitroreductase was an oxygeninsensitive enzyme. The reductive products of 4-nitrophenol were determined by HPLC and MS.
基金supported by the National Natural Science Foundation of China(No.20275004)
文摘An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carded out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.