期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metabolic reprogramming: a new option for the treatment of spinal cord injury
1
作者 Jiangjie Chen Jinyang Chen +11 位作者 Chao Yu Kaishun Xia Biao Yang ronghao wang Yi Li Kesi Shi Yuang Zhang Haibin Xu Xuesong Zhang Jingkai wang Qixin Chen Chengzhen Liang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1042-1057,共16页
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ... Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions. 展开更多
关键词 AXONS GLYCOLYSIS metabolic reprogramming metabolism mitochondria neural regeneration NEUROPROTECTION oxidative phosphorylation spinal cord injury therapy
下载PDF
A High-Throughput Phenotyping Pipeline for Image Processing and Functional Growth Curve Analysis 被引量:3
2
作者 ronghao wang Yumou Qiu +2 位作者 Yuzhen Zhou Zhikai Liang James C.Schnable 《Plant Phenomics》 2020年第1期188-195,共8页
High-throughput phenotyping system has become more and more popular in plant science research.The data analysis for such a system typically involves two steps:plant feature extraction through image processing and stat... High-throughput phenotyping system has become more and more popular in plant science research.The data analysis for such a system typically involves two steps:plant feature extraction through image processing and statistical analysis for the extracted features.The current approach is to perform those two steps on different platforms.We develop the package“implant”in R for both robust feature extraction and functional data analysis.For image processing,the“implant”package provides methods including thresholding,hidden Markov random field model,and morphological operations.For statistical analysis,this package can produce nonparametric curve fitting with its confidence region for plant growth.A functional ANOVA model to test for the treatment and genotype effects on the plant growth dynamics is also provided. 展开更多
关键词 STEPS image operations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部