With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provid...With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress of the VLSI physical designs. The recent developments of floorplanning and placement, interconnect effects, modeling and delay, buffer insertion and wire sizing, circuit order reduction, power grid analysis, parasitic extraction, and clock signal distribution are briefly reviewed.展开更多
文摘With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress of the VLSI physical designs. The recent developments of floorplanning and placement, interconnect effects, modeling and delay, buffer insertion and wire sizing, circuit order reduction, power grid analysis, parasitic extraction, and clock signal distribution are briefly reviewed.