期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Leveraging machine learning techniques for predicting pancreatic neuroendocrine tumor grades using biochemical and tumor markers 被引量:1
1
作者 rui-quan zhou Hong-Chen Ji +2 位作者 Qu Liu, Chun-Yu Zhu Rong Liu 《World Journal of Clinical Cases》 SCIE 2019年第13期1611-1622,共12页
BACKGROUND The incidence of pancreatic neuroendocrine tumors (PNETs) is now increasing rapidly. The tumor grade of PNETs significantly affects the treatment strategy and prognosis. However, there is still no effective... BACKGROUND The incidence of pancreatic neuroendocrine tumors (PNETs) is now increasing rapidly. The tumor grade of PNETs significantly affects the treatment strategy and prognosis. However, there is still no effective way to non-invasively classify PNET grades. Machine learning (ML) algorithms have shown potential in improving the prediction accuracy using comprehensive data. AIM To provide a ML approach to predict PNET tumor grade using clinical data. METHODS The clinical data of histologically confirmed PNET cases between 2012 and 2018 were collected. A method of minimum P for the Chi-square test was used to divide the continuous variables into binary variables. The continuous variables were transformed into binary variables according to the cutoff value, while the P value was minimum. Four classical supervised ML models, including logistic regression, support vector machine (SVM), linear discriminant analysis (LDA) and multi-layer perceptron (MLP) were trained by clinical data, and the models were labeled with the pathological tumor grade of each PNET patient. The performance of each model, including the weight of the different parameters, were evaluated. RESULTS In total, 91 PNET cases were included in this study, in which 32 were G1, 48 were G2 and 11 were G3. The results showed that there were significant differences among the clinical parameters of patients with different grades. Patients with higher grades tended to have higher values of total bilirubin, alpha fetoprotein, carcinoembryonic antigen, carbohydrate antigen 19-9 and carbohydrate antigen 72-4. Among the models we used, LDA performed best in predicting the PNET tumor grade. Meanwhile, MLP had the highest recall rate for G3 cases. All of the models stabilized when the sample size was over 70 percent of the total, except for SVM. Different parameters varied in affecting the outcomes of the models. Overall, alanine transaminase, total bilirubin, carcinoembryonic antigen, carbohydrate antigen 19-9 and carbohydrate antigen 72-4 affected the outcome greater than other parameters. CONCLUSION ML could be a simple and effective method in non-invasively predicting PNET grades by using the routine data obtained from the results of biochemical and tumor markers. 展开更多
关键词 Machine learning PANCREATIC NEUROENDOCRINE TUMORS TUMOR grade BIOCHEMICAL indexes TUMOR markers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部