Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Ni...Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.展开更多
Nitrogen-doped TiO2 nanotubes(TNTs)were prepared by ion implantation and anodic oxidation.The prepared samples were applied in photocatalytic(PC)oxidation of methyl blue,rhodamine B,and bisphenol A under light irradia...Nitrogen-doped TiO2 nanotubes(TNTs)were prepared by ion implantation and anodic oxidation.The prepared samples were applied in photocatalytic(PC)oxidation of methyl blue,rhodamine B,and bisphenol A under light irradiation.To explore the influence of doped ions on the band and electronic structure of TiO2,computer simulations were performed using the VASP code implementing spin-polarized density functional theory(DFT).Both substitutional and interstitial nitrogen atoms were considered.The experimental and computational results propose that the electronic structure of TiO2 was modified because of the emergence of impurity states in the band gap by introducing nitrogen into the lattice,leading to the absorption of visible light.The synergy effects of tubular structures and doped nitrogen ions were responsible for highly efficient and stable PC activities induced by visible and ultraviolet(UV)light.展开更多
To evaluate decolorization and detoxification of Azure B dye by a newly isolated Bacillus sp. MZS 10 strain, the cultivation medium and decolorization mechanism of the isolate were investigated. The decolorization was...To evaluate decolorization and detoxification of Azure B dye by a newly isolated Bacillus sp. MZS 10 strain, the cultivation medium and decolorization mechanism of the isolate were investigated. The decolorization was discovered to be dependent on cell density of the isolate and reached 93.55% (0.04 g/L) after 14 hr of cultivation in a 5 L stirred-tank fermenter at 2.0 g/L yeast extract and 6.0 g/L soluble starch and a small amount of mineral salts. The decolorization metabolites were identified with ultra performance liquid chromatography-tandem mass spectroscopy (UPLC-MS). A mechanism for decolorization of Azure B was proposed as follows: the C=N in Azure B was initially reduced to -NH by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent quinone dehydrogenase, and then the -NH further combined with -OH derived from glucose to form a stable and colorless compound through a dehydration reaction. The phytotoxicity was evaluated for both Azure B and its related derivatives produced by Bacillus sp. MZS 10 decolorization, indicating that the decolorization metabolites were less toxic than original dye. The decolorization efficiency and mechanism shown by Bacillus sp. MZS10 provided insight on its potential application for the bioremediation of the dye Azure B.展开更多
文摘Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.
基金Project supported by the National Natural Science Foundation for Joint Fund Key Project of China(Grant No.U1865206)the National Science and Technology Major Project of China(Grant No.2017-Ⅶ-0012-0107)+1 种基金the National Defense Science and Technology Key Laboratory Fund of China(Grant No.614220207011802)the Key Area Research and Development Program of Guangdong Province,China(Grant No.2019B090909002)。
文摘Nitrogen-doped TiO2 nanotubes(TNTs)were prepared by ion implantation and anodic oxidation.The prepared samples were applied in photocatalytic(PC)oxidation of methyl blue,rhodamine B,and bisphenol A under light irradiation.To explore the influence of doped ions on the band and electronic structure of TiO2,computer simulations were performed using the VASP code implementing spin-polarized density functional theory(DFT).Both substitutional and interstitial nitrogen atoms were considered.The experimental and computational results propose that the electronic structure of TiO2 was modified because of the emergence of impurity states in the band gap by introducing nitrogen into the lattice,leading to the absorption of visible light.The synergy effects of tubular structures and doped nitrogen ions were responsible for highly efficient and stable PC activities induced by visible and ultraviolet(UV)light.
基金supported by the Science&Technology Program of Jiangsu Province(No.BE2011623)the Scientific Research Project of Provincial Environmental Protection Bureau of Jiangsu Province(No.2012047)
文摘To evaluate decolorization and detoxification of Azure B dye by a newly isolated Bacillus sp. MZS 10 strain, the cultivation medium and decolorization mechanism of the isolate were investigated. The decolorization was discovered to be dependent on cell density of the isolate and reached 93.55% (0.04 g/L) after 14 hr of cultivation in a 5 L stirred-tank fermenter at 2.0 g/L yeast extract and 6.0 g/L soluble starch and a small amount of mineral salts. The decolorization metabolites were identified with ultra performance liquid chromatography-tandem mass spectroscopy (UPLC-MS). A mechanism for decolorization of Azure B was proposed as follows: the C=N in Azure B was initially reduced to -NH by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent quinone dehydrogenase, and then the -NH further combined with -OH derived from glucose to form a stable and colorless compound through a dehydration reaction. The phytotoxicity was evaluated for both Azure B and its related derivatives produced by Bacillus sp. MZS 10 decolorization, indicating that the decolorization metabolites were less toxic than original dye. The decolorization efficiency and mechanism shown by Bacillus sp. MZS10 provided insight on its potential application for the bioremediation of the dye Azure B.