DNA sequencers have become increasingly important research and diagnostic tools over the past 20 years.In this study,we developed a single-molecule desktop sequencer,GenoCare 1600(GenoCare),which utilizes amplificatio...DNA sequencers have become increasingly important research and diagnostic tools over the past 20 years.In this study,we developed a single-molecule desktop sequencer,GenoCare 1600(GenoCare),which utilizes amplification-free library preparation and two-color sequencing-by-synthesis chemistry,making it more user-friendly compared with previous single-molecule sequencing platforms for clinical use.Using the GenoCare platform,we sequenced an Escherichia coli standard sample and achieved a consensus accuracy exceeding 99.99%.We also evaluated the sequencing performance of this platform in microbial mixtures and coronavirus disease 2019(COVID-19)samples from throat swabs.Our findings indicate that the GenoCare platform allows for microbial quantitation,sensitive identification of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus,and accurate detection of virus mutations,as confirmed by Sanger sequencing,demonstrating its remarkable potential in clinical application.展开更多
Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate ...Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate capability.Herein,we report a new layered manganese-based cathode material,ZnMn_(3)O_(7)(ZMO),which possesses a large interlayer spacing of 4.8Åand allows the intercalation of~1.23 Zn-ions per formula unit(corresponding to a capacity of~170 mAh/g).Importantly,ZMO exhibits good cycling stability(72.9%capacity retention over 400 cycles),ultrafast-charging capability(73%state of charge in 1.5 min),and an ultrahigh power density(3510 W/kg at 88 Wh/kg).Through kinetic characterization,the favorable diffusion of ions and the dominant capacitor contribution are found to be conducive to the achievement of superior fast charging capability.Furthermore,the charge storage mechanism is revealed by ex-situ XRD and ex-situ XPS.This work may shed light on the design of high-performance electrode materials for AZIBs.展开更多
文摘DNA sequencers have become increasingly important research and diagnostic tools over the past 20 years.In this study,we developed a single-molecule desktop sequencer,GenoCare 1600(GenoCare),which utilizes amplification-free library preparation and two-color sequencing-by-synthesis chemistry,making it more user-friendly compared with previous single-molecule sequencing platforms for clinical use.Using the GenoCare platform,we sequenced an Escherichia coli standard sample and achieved a consensus accuracy exceeding 99.99%.We also evaluated the sequencing performance of this platform in microbial mixtures and coronavirus disease 2019(COVID-19)samples from throat swabs.Our findings indicate that the GenoCare platform allows for microbial quantitation,sensitive identification of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus,and accurate detection of virus mutations,as confirmed by Sanger sequencing,demonstrating its remarkable potential in clinical application.
基金supported by the Fujian Science and Technology Key Project(No.2021H0042)。
文摘Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries(AZIBs),however,they often experience cycling instability issues and inferior rate capability.Herein,we report a new layered manganese-based cathode material,ZnMn_(3)O_(7)(ZMO),which possesses a large interlayer spacing of 4.8Åand allows the intercalation of~1.23 Zn-ions per formula unit(corresponding to a capacity of~170 mAh/g).Importantly,ZMO exhibits good cycling stability(72.9%capacity retention over 400 cycles),ultrafast-charging capability(73%state of charge in 1.5 min),and an ultrahigh power density(3510 W/kg at 88 Wh/kg).Through kinetic characterization,the favorable diffusion of ions and the dominant capacitor contribution are found to be conducive to the achievement of superior fast charging capability.Furthermore,the charge storage mechanism is revealed by ex-situ XRD and ex-situ XPS.This work may shed light on the design of high-performance electrode materials for AZIBs.