(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric pr...(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as T_C were systematically investigated. The orthorhombic–tetragonal(O–T) two phases were detected in all(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase(CO/C T= 45/55), high piezoelectric properties of d 33= 239 pC/N, k_p= 34%, and P_r = 25.23 μC/cm^2 were obtained at x = 0.04. Moreover, a high T_C = 348 ℃ was also achieved in KNN–x BLZ ceramic at x = 0.04. These results indicate that (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 system is a promising candidate for high-temperature piezoelectric devices.展开更多
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20130006110006)National Natural Science Foundation of China(Grant Nos.51272023 and 51472026)
文摘(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as T_C were systematically investigated. The orthorhombic–tetragonal(O–T) two phases were detected in all(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase(CO/C T= 45/55), high piezoelectric properties of d 33= 239 pC/N, k_p= 34%, and P_r = 25.23 μC/cm^2 were obtained at x = 0.04. Moreover, a high T_C = 348 ℃ was also achieved in KNN–x BLZ ceramic at x = 0.04. These results indicate that (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 system is a promising candidate for high-temperature piezoelectric devices.