Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr...Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.展开更多
Objective: To observe the changes on skin wheal and erythema of skin prick test for the patients with allergic rhinitis during SLIT. Methods: Since March 2010 the 103 cases of SLIT attacked by allergic rhinitis patien...Objective: To observe the changes on skin wheal and erythema of skin prick test for the patients with allergic rhinitis during SLIT. Methods: Since March 2010 the 103 cases of SLIT attacked by allergic rhinitis patients, divided into four age groups, respectively measured the diameter of skin wheal and erythema before treatment, six months, one year and 2 years after SLIT. The data were analyzed by analysis of variance method;P Results: The results showed that the most changes of skin erythema diameter were statistically significant in N1, N2, N3 age group during test observation compare with the data before SLIT (p Conclusion: Although most of the skin test wheal did not change significantly during the treatment of SLIT, the erythema reaction decreased to a certain extent, indicating that the intensity of histamine release may be reduced during the treatment.展开更多
The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states thr...The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colors, high quantum efficiencies and efficient energy/charge transfer processes. Recently, a significant breakthrough in lifetime tuning of excited states has been made;the purely organic molecules were found to have ultralonglived excited state under ambient conditions with luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores. Given the conceptual advance in understanding the fundamental behavior of excited state tuning in organic luminescent materials, the investigations of organic ultralong room-temperature phosphorescence(OURTP) should provide new directions for researches and have profound impacts on many different disciplines. Here, we summarized the recent understandings on the excited state tuning, the reported OURTP molecules and their design considerations,the spectacular photophysical performance, and the amazing optoelectronic applications of the newly emerged organic optoelectronic materials that free of heavy metals.展开更多
Two kinds of cyanophenyl terminated pyrene derivatives for organic light-emitting diodes were synthesized and characterized by UV/Vis, fluorescence (FL), 1H NMR, MALDI-TOF, CV and TGA. Both compounds exhibited blue ...Two kinds of cyanophenyl terminated pyrene derivatives for organic light-emitting diodes were synthesized and characterized by UV/Vis, fluorescence (FL), 1H NMR, MALDI-TOF, CV and TGA. Both compounds exhibited blue photoluminescence and high fluorescent quantum yield of 85% and 75% in solutions. Due to the presence of acetylene spacer, the compound distinguishes itself by high coplanarity, high thermal stability, little Stokes' shift and clear excimer formation in the solid state from the acetylene-free compound. In order to suppress the molecular aggregation, the electroluminescent properties were studied by doing the materials in PVK. The result proved that energy transfer happened from the host PVK to the materials.展开更多
With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emittin...With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.展开更多
Computational investigations of Cu(I)-catalyzed C--N coupling between aryl halides and aqueous ammonia without addition of any base or ligand were reported. Density functional theory calculations were performed to r...Computational investigations of Cu(I)-catalyzed C--N coupling between aryl halides and aqueous ammonia without addition of any base or ligand were reported. Density functional theory calculations were performed to re- veal the mechanism of the ligand-free amination reaction for the preparation of primary aromatic amines. Through systematic evaluation of the relative concentrations of possible Cu species in solution, we propose that the active catalyst is the neutral Cu(I) complexes rather than the Cu(I) cations; oxidative addition of aryl bromide is a facile step of the catalytic cycle; reactant (NH3) and solvent molecule (NMP) can act as ligands of Cu species to help re- duce the activation energy of the forward reaction and increase the activation energy of the reverse reaction; except for Pathway B, the deprotonation step is irreversible due to the extreme exothermic feature; the elimination of H20 is kinetically favored, while that of HBr is thermodynamically preferred. These findings should be valuable for the mechanism understandings of the ligand-free Cu-catalyzed C--N cross-coupling reactions and for the further de- velopment of highly efficient amination catalyst systems.展开更多
Organic ultralong room-temperature phosphorescence(OURTP)with a long-lived triplet excited state up to several seconds has triggered widespread research interests,but most OURTP materials are excited by only ultraviol...Organic ultralong room-temperature phosphorescence(OURTP)with a long-lived triplet excited state up to several seconds has triggered widespread research interests,but most OURTP materials are excited by only ultraviolet(UV)or blue light owing to their unique stabilized triplet-and solid-state emission feature.Here,we demonstrate that near-infrared-(NIR-)excitable OURTP molecules can be rationally designed by implanting intra/intermolecular charge transfer(CT)characteristics into Haggregation to stimulate the efficient nonlinear multiphoton absorption(MPA).The resultant upconverted MPA-OURTP show ultralong lifetimes over 0.42 s and a phosphorescence quantum yield of~37%under both UV and NIR light irradiation.Empowered by the extraordinary MPA-OURTP,novel applications including two-photon bioimaging,visual laser power detection and excitation,and lifetime multiplexing encryption devices were successfully realized.These discoveries illustrate not only a delicate design map for the construction of NIR-excitable OURTP materials but also insightful guidance for exploring OURTP-based nonlinear optoelectronic properties and applications.展开更多
In this article, we reported the synthesis and characterization of a novel silafluorene-based host material, 1,3-bis(5-methyl-5H- dibenzo[b,d]silol-5-yl)benzene (Me-DBSiB), for blue phosphorescent organic light-em...In this article, we reported the synthesis and characterization of a novel silafluorene-based host material, 1,3-bis(5-methyl-5H- dibenzo[b,d]silol-5-yl)benzene (Me-DBSiB), for blue phosphorescent organic light-emitting devices (PHOLEDs). The Me- DBSiB was constructed by linking 9-methyl-9-silafluorene units to the phenyl framework through the sp3-hybridized silica atom to maintain high singlet and triplet energy, as well as to enhance thermal and photo-stability. The calculated result shows that the phenyl core does not contribute to both the highest occupied molecular orbital and lowest unoccupied molecular orbital. Wide optical energy gap of 4.1 eV was achieved. When the Me-DBSiB was used as the host and iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N,C2']picolate (Firpic) as the guest, a maximum current efficiency was 14.8 cd/A, lower than the counterpart of 1,3-bis(9-carbazolyl)benzene (28 cd/A). The unbalanced barrier for electron and hole injection to host layer may be responsible for low efficiency. Even so, our results show that silafluorene moieties are promising building blocks for constructing wide-energy-gap host materials.展开更多
The exploration of high-performance solution-processible host materials for blue and white electrophosphorescent devices is a key and fundamental challenge in the ongoing development of organic semiconductors.Herein,t...The exploration of high-performance solution-processible host materials for blue and white electrophosphorescent devices is a key and fundamental challenge in the ongoing development of organic semiconductors.Herein,two solution-processible resonance host materials with self-adaptive characteristics are delicately designed and constructed.Because of the dynamic tautomerization upon resonance variation,these smart hosts show self-adaptive and selectively enhanced charge carrier flux at high triplet energy levels.Conferred by the resonance molecules,solution-processed blue and white devices exhibit excellent maximum current efficiencies(CEs)of 29.8 and 57.3 cd A−1,and external quantum efficiencies(EQEs)up to 14.5%and 23.5%,respectively.Our works highlight the significant progress of the solution-processed phosphorescent organic light-emitting diodes(PhOLEDs)using resonance host molecules,potentially furnishing a leap forward in constructing advanced organic semiconductors for next-generation optoelectronic devices.展开更多
Organic semiconductors with bipolar transporting character are highly attractive as they offer the possibility to achieve high optoelectronic performance in simple device structures.However,the continual efforts in pr...Organic semiconductors with bipolar transporting character are highly attractive as they offer the possibility to achieve high optoelectronic performance in simple device structures.However,the continual efforts in preparing bipolar materials are focusing on donor-acceptor(D-A)architectures by introducing both electron-donating and electron-withdrawing units into one molecule in static molecular design principles.Here,we report a dynamic approach to construct bipolar materials using only electron-donating carbazoles connected by N-P=X resonance linkages in a donor-resonance-donor(D-r-D)structure.By facilitating the stimuli-responsive resonance variation,these D-r-D molecules exhibit extraordinary bipolar properties by positively charging one donor of carbazole in enantiotropic N^(+)=P-X-canonical forms for electron transport without the involvement of any acceptors.With thus realized efficient and balanced charge transport,blue and deep-blue phosphorescent organic light emitting diodes hosted by these D-r-D molecules show high external quantum efficiencies up to 16.2%and 18.3%in vacuum-deposited and spin-coated devices,respectively.These results via the D-r-D molecular design strategy represent an important concept advance in constructing bipolar organic optoelectronic semiconductors dynamically for high-performance device applications.展开更多
Air stable diradicaloid polycyclic aromatic hydrocarbon(PAH)materials possess unique electronic and magnetic properties for various applications.In general,long conjugated distances between two radical centers are req...Air stable diradicaloid polycyclic aromatic hydrocarbon(PAH)materials possess unique electronic and magnetic properties for various applications.In general,long conjugated distances between two radical centers are required to improve the air stability,thereby complicating the synthetic procedures.Herein,the chalcogen containing rubicenes(O-,S-,and Se-rubicenes)were systematically investigated to understand the chalcogen effects on chalcogen-rubicene physicochemical properties.Impressively,these rubicenes presented unprecedented diradical characterwithin one simple benzene ring and excellent air stabilities.Theirdiradicalcharacterweremanifested by single-crystal X-ray studies,variable-temperature nuclear magnetic resonance,and electron spin resonance.Furthermore,the nucleus independent chemical shifts andthe anisotropy of the induced currentdensity calculations revealed that the formation of diradical was caused by a pro-aromaticity driving force.Importantly,the diradical character of rubicenes are visualizedbyFractionalOccupationNumberWeighted Electron Density(FOD)plots,which present high NFOD values from 1.651 to 1.830.This contribution provided distinctive insights into the structure and property relationship of PAH diradicals.展开更多
基金National Natural Science Foundation of China (62274094, 62175117)Natural Science Foundation of Jiangsu Higher Education Institutions (22KJB510011)+1 种基金Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2260)Huali Talents Program of Nanjing University of Posts and Telecommunications。
文摘Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.
文摘Objective: To observe the changes on skin wheal and erythema of skin prick test for the patients with allergic rhinitis during SLIT. Methods: Since March 2010 the 103 cases of SLIT attacked by allergic rhinitis patients, divided into four age groups, respectively measured the diameter of skin wheal and erythema before treatment, six months, one year and 2 years after SLIT. The data were analyzed by analysis of variance method;P Results: The results showed that the most changes of skin erythema diameter were statistically significant in N1, N2, N3 age group during test observation compare with the data before SLIT (p Conclusion: Although most of the skin test wheal did not change significantly during the treatment of SLIT, the erythema reaction decreased to a certain extent, indicating that the intensity of histamine release may be reduced during the treatment.
基金supported in part by the National Natural Science Foundation of China(22075149,22105104,62075102,and 22275097)Jiangsu Specially-Appointed Professor Plan,the Six Talent Plan of Jiangsu Province(XCL-049),HuaLi Talents Program of Nanjing University of Posts and Telecommunications,the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology)(2022-skllmd-01)+3 种基金the Open Research Fund of Songshan Lake Materials Laboratory(2022SLABFN16)the Innovation and Entrepreneurship Program of Jiangsu Province,China(JSSCBS20210536)the Fifth 333-Project of Jiangsu Province of China(BRA2019080)Nanjing University of Posts and Telecommunications Start-up Fund(NY220151 and NY219007).
基金supported in part by the National Natural Science Foundation of China(21274065,21304049,61204048 and 51173081)The Ministry of Education of China(IRT1148)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)the Qing Lan Project of Jiangsu Province
文摘The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colors, high quantum efficiencies and efficient energy/charge transfer processes. Recently, a significant breakthrough in lifetime tuning of excited states has been made;the purely organic molecules were found to have ultralonglived excited state under ambient conditions with luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores. Given the conceptual advance in understanding the fundamental behavior of excited state tuning in organic luminescent materials, the investigations of organic ultralong room-temperature phosphorescence(OURTP) should provide new directions for researches and have profound impacts on many different disciplines. Here, we summarized the recent understandings on the excited state tuning, the reported OURTP molecules and their design considerations,the spectacular photophysical performance, and the amazing optoelectronic applications of the newly emerged organic optoelectronic materials that free of heavy metals.
文摘Two kinds of cyanophenyl terminated pyrene derivatives for organic light-emitting diodes were synthesized and characterized by UV/Vis, fluorescence (FL), 1H NMR, MALDI-TOF, CV and TGA. Both compounds exhibited blue photoluminescence and high fluorescent quantum yield of 85% and 75% in solutions. Due to the presence of acetylene spacer, the compound distinguishes itself by high coplanarity, high thermal stability, little Stokes' shift and clear excimer formation in the solid state from the acetylene-free compound. In order to suppress the molecular aggregation, the electroluminescent properties were studied by doing the materials in PVK. The result proved that energy transfer happened from the host PVK to the materials.
基金supported by the National Natural Science Foundation of China(Nos.21772095,91833306,51873159,91956107,61875090 and 21674049)1311 Talents Program of Nanjing University of Posts and Telecommunications(Dingshan),the Six Talent Plan(No.2016XCL050)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,No.YX030003)China Postdoctoral Science Foundation(No.2020M671460)Jiangsu Planned Projects for Postdoctoral Research Funds(No.20202137)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.46030CX17761)。
文摘With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.
文摘Computational investigations of Cu(I)-catalyzed C--N coupling between aryl halides and aqueous ammonia without addition of any base or ligand were reported. Density functional theory calculations were performed to re- veal the mechanism of the ligand-free amination reaction for the preparation of primary aromatic amines. Through systematic evaluation of the relative concentrations of possible Cu species in solution, we propose that the active catalyst is the neutral Cu(I) complexes rather than the Cu(I) cations; oxidative addition of aryl bromide is a facile step of the catalytic cycle; reactant (NH3) and solvent molecule (NMP) can act as ligands of Cu species to help re- duce the activation energy of the forward reaction and increase the activation energy of the reverse reaction; except for Pathway B, the deprotonation step is irreversible due to the extreme exothermic feature; the elimination of H20 is kinetically favored, while that of HBr is thermodynamically preferred. These findings should be valuable for the mechanism understandings of the ligand-free Cu-catalyzed C--N cross-coupling reactions and for the further de- velopment of highly efficient amination catalyst systems.
基金This work was financially supported in part by the National Natural Science Foundation of China(21772095,21704042,91833306,61875090,21674049,61904152,and 21604039)the Six Talent Plan of Jiangsu Province(XCL-049)+5 种基金the 333 High-Level Talents Training Project of Jiangsu Province(BRA2019080)the Natural Science Fund for Colleges and Universities in Jiangsu Province(19KJA180005)the 1311 Talents Program of Nanjing University of Posts and Telecommunications(Dingfeng and Dingshan)the China Postdoctoral Science Foundation project(2018M642284)the Nanjing University of Posts and Telecommunications Start-up Fund(NUPTSF)(NY219007,NY217140,and NY219160)the Science and Technology Innovation Project for Overseas Students in Nanjing.
文摘Organic ultralong room-temperature phosphorescence(OURTP)with a long-lived triplet excited state up to several seconds has triggered widespread research interests,but most OURTP materials are excited by only ultraviolet(UV)or blue light owing to their unique stabilized triplet-and solid-state emission feature.Here,we demonstrate that near-infrared-(NIR-)excitable OURTP molecules can be rationally designed by implanting intra/intermolecular charge transfer(CT)characteristics into Haggregation to stimulate the efficient nonlinear multiphoton absorption(MPA).The resultant upconverted MPA-OURTP show ultralong lifetimes over 0.42 s and a phosphorescence quantum yield of~37%under both UV and NIR light irradiation.Empowered by the extraordinary MPA-OURTP,novel applications including two-photon bioimaging,visual laser power detection and excitation,and lifetime multiplexing encryption devices were successfully realized.These discoveries illustrate not only a delicate design map for the construction of NIR-excitable OURTP materials but also insightful guidance for exploring OURTP-based nonlinear optoelectronic properties and applications.
基金supported by the Fundamental Research Funds for the Central Universities(08143034)the National Basic Research Program of China(2013CB328705)the National Natural Science Foundation of China(61275034,61106123)
文摘In this article, we reported the synthesis and characterization of a novel silafluorene-based host material, 1,3-bis(5-methyl-5H- dibenzo[b,d]silol-5-yl)benzene (Me-DBSiB), for blue phosphorescent organic light-emitting devices (PHOLEDs). The Me- DBSiB was constructed by linking 9-methyl-9-silafluorene units to the phenyl framework through the sp3-hybridized silica atom to maintain high singlet and triplet energy, as well as to enhance thermal and photo-stability. The calculated result shows that the phenyl core does not contribute to both the highest occupied molecular orbital and lowest unoccupied molecular orbital. Wide optical energy gap of 4.1 eV was achieved. When the Me-DBSiB was used as the host and iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N,C2']picolate (Firpic) as the guest, a maximum current efficiency was 14.8 cd/A, lower than the counterpart of 1,3-bis(9-carbazolyl)benzene (28 cd/A). The unbalanced barrier for electron and hole injection to host layer may be responsible for low efficiency. Even so, our results show that silafluorene moieties are promising building blocks for constructing wide-energy-gap host materials.
基金This work was supported by the National Natural Science Foundation of China(21704042,21604039,61875090,51873159,91833306,21674049)the Six Talent Plan of Jiangsu Province(XCL-049)+4 种基金1311 Talents Program of Nanjing University of Posts and Telecommunications(Dingfeng)the Natural Science Fund for Colleges and Universities in Jiangsu Province(17KJB150017)China Postdoctoral Science Foundation Funded Project(2018M642284)the Nanjing University of Posts and Telecommunications Start-up Fund(NUPTSF)(NY219007,NY217140)the Science and Technology Innovation Project for Overseas Students in Nanjing.
文摘The exploration of high-performance solution-processible host materials for blue and white electrophosphorescent devices is a key and fundamental challenge in the ongoing development of organic semiconductors.Herein,two solution-processible resonance host materials with self-adaptive characteristics are delicately designed and constructed.Because of the dynamic tautomerization upon resonance variation,these smart hosts show self-adaptive and selectively enhanced charge carrier flux at high triplet energy levels.Conferred by the resonance molecules,solution-processed blue and white devices exhibit excellent maximum current efficiencies(CEs)of 29.8 and 57.3 cd A−1,and external quantum efficiencies(EQEs)up to 14.5%and 23.5%,respectively.Our works highlight the significant progress of the solution-processed phosphorescent organic light-emitting diodes(PhOLEDs)using resonance host molecules,potentially furnishing a leap forward in constructing advanced organic semiconductors for next-generation optoelectronic devices.
基金supported by the National Natural Science Foundation of China(21772095,91833306,61875090,and 21674049)the 1311 Talents Program of Nanjing University of Posts and Telecommunications(Dingshan),the Six Talent Plan(2016XCL050)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(46030CX17761).
文摘Organic semiconductors with bipolar transporting character are highly attractive as they offer the possibility to achieve high optoelectronic performance in simple device structures.However,the continual efforts in preparing bipolar materials are focusing on donor-acceptor(D-A)architectures by introducing both electron-donating and electron-withdrawing units into one molecule in static molecular design principles.Here,we report a dynamic approach to construct bipolar materials using only electron-donating carbazoles connected by N-P=X resonance linkages in a donor-resonance-donor(D-r-D)structure.By facilitating the stimuli-responsive resonance variation,these D-r-D molecules exhibit extraordinary bipolar properties by positively charging one donor of carbazole in enantiotropic N^(+)=P-X-canonical forms for electron transport without the involvement of any acceptors.With thus realized efficient and balanced charge transport,blue and deep-blue phosphorescent organic light emitting diodes hosted by these D-r-D molecules show high external quantum efficiencies up to 16.2%and 18.3%in vacuum-deposited and spin-coated devices,respectively.These results via the D-r-D molecular design strategy represent an important concept advance in constructing bipolar organic optoelectronic semiconductors dynamically for high-performance device applications.
基金The work was supported by the NSFC(grant nos.51925306,21774130,and 21905277)National Key R&D Program of China(grant no.2018FYA 0305800)+2 种基金Key Research Program of the Chinese Academy of Sciences(grant no.XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(grant no.XDB28000000)Fundamental Research Funds for the Central University.DFT results described in this short communication are obtained on the National Super-computing Center in Shenzhen(Shenzhen Cloud Computing Center).
文摘Air stable diradicaloid polycyclic aromatic hydrocarbon(PAH)materials possess unique electronic and magnetic properties for various applications.In general,long conjugated distances between two radical centers are required to improve the air stability,thereby complicating the synthetic procedures.Herein,the chalcogen containing rubicenes(O-,S-,and Se-rubicenes)were systematically investigated to understand the chalcogen effects on chalcogen-rubicene physicochemical properties.Impressively,these rubicenes presented unprecedented diradical characterwithin one simple benzene ring and excellent air stabilities.Theirdiradicalcharacterweremanifested by single-crystal X-ray studies,variable-temperature nuclear magnetic resonance,and electron spin resonance.Furthermore,the nucleus independent chemical shifts andthe anisotropy of the induced currentdensity calculations revealed that the formation of diradical was caused by a pro-aromaticity driving force.Importantly,the diradical character of rubicenes are visualizedbyFractionalOccupationNumberWeighted Electron Density(FOD)plots,which present high NFOD values from 1.651 to 1.830.This contribution provided distinctive insights into the structure and property relationship of PAH diradicals.