Objective:To determine the involvement and the modulatory effects of IL-33 during Plasmodium berghei ANKA(PbA)infection.Methods:PbA infection in male ICR mice was utilized as a model of malaria.Systemically circulatin...Objective:To determine the involvement and the modulatory effects of IL-33 during Plasmodium berghei ANKA(PbA)infection.Methods:PbA infection in male ICR mice was utilized as a model of malaria.Systemically circulating IL-33 levels were determined in blood plasma by enzyme-linked immunosorbent assay(ELISA).After 24 hours post-inoculation of PbA,recombinant IL-33 and ST2,and antibodies against IL-33 and IgG treatments were administered daily for 3 days.Tissue expression and localization of IL-33 were assessed in organs generally affected by malaria via immunohistochemistry.Moreover,histopathological examination was performed to assess the effects of the treatments.Results:The levels of systemic IL-33 were elevated at the critical phase of PbA infection.Likewise,immunohistochemical analysis revealed a significant upregulation of IL-33 expression at the critical phase in the brain,lungs,and spleen of PbA-infected mice as compared to healthy controls.Treatment with IL-33 protected against experimental cerebral malaria development and reduced pathological features in the brain and lungs of the PbA-infected mice.Conclusions:A potential critical role and involvement of IL-33 in PbA infection may hint at the resolution of immunopathological sequelae associated with malaria.展开更多
Malaria is an intra-cellular parasitic protozoon responsible for millions of deaths annually.Host and parasite genetic factors are crucial in affecting susceptibility to malaria and progression of the disease.Recent i...Malaria is an intra-cellular parasitic protozoon responsible for millions of deaths annually.Host and parasite genetic factors are crucial in affecting susceptibility to malaria and progression of the disease.Recent increased deployment of vector controls and new artemisinin combination therapies have dramatically reduced the mortality and morbidity of malaria worldwide.However, the gradual emergence of parasite and mosquito resistance has raised alarm regarding the effectiveness of current artemisinin-based therapies.In this review,mechanisms of anti-malarial drug resistance in the Plasmodium parasite and new genetically engineered tools of research priorities are discussed.The complexity of the parasite lifecycle demands novel interventions to achieve global eradication.However,turning laboratory discovered transgenic interventions into functional products entails multiple experimental phases in addition to ethical and safety hurdles.Uncertainty over the regulatory status and public acceptance further discourage the implementation of genetically modified organisms.展开更多
基金supported by the Fundamental Research Grant Scheme(FRGS)from the Malaysia Ministry of Higher Education(FRGS/1/2016/SKK10/UPM/02/1).
文摘Objective:To determine the involvement and the modulatory effects of IL-33 during Plasmodium berghei ANKA(PbA)infection.Methods:PbA infection in male ICR mice was utilized as a model of malaria.Systemically circulating IL-33 levels were determined in blood plasma by enzyme-linked immunosorbent assay(ELISA).After 24 hours post-inoculation of PbA,recombinant IL-33 and ST2,and antibodies against IL-33 and IgG treatments were administered daily for 3 days.Tissue expression and localization of IL-33 were assessed in organs generally affected by malaria via immunohistochemistry.Moreover,histopathological examination was performed to assess the effects of the treatments.Results:The levels of systemic IL-33 were elevated at the critical phase of PbA infection.Likewise,immunohistochemical analysis revealed a significant upregulation of IL-33 expression at the critical phase in the brain,lungs,and spleen of PbA-infected mice as compared to healthy controls.Treatment with IL-33 protected against experimental cerebral malaria development and reduced pathological features in the brain and lungs of the PbA-infected mice.Conclusions:A potential critical role and involvement of IL-33 in PbA infection may hint at the resolution of immunopathological sequelae associated with malaria.
文摘Malaria is an intra-cellular parasitic protozoon responsible for millions of deaths annually.Host and parasite genetic factors are crucial in affecting susceptibility to malaria and progression of the disease.Recent increased deployment of vector controls and new artemisinin combination therapies have dramatically reduced the mortality and morbidity of malaria worldwide.However, the gradual emergence of parasite and mosquito resistance has raised alarm regarding the effectiveness of current artemisinin-based therapies.In this review,mechanisms of anti-malarial drug resistance in the Plasmodium parasite and new genetically engineered tools of research priorities are discussed.The complexity of the parasite lifecycle demands novel interventions to achieve global eradication.However,turning laboratory discovered transgenic interventions into functional products entails multiple experimental phases in addition to ethical and safety hurdles.Uncertainty over the regulatory status and public acceptance further discourage the implementation of genetically modified organisms.