Emission factors (EFs) of particulate matter (PM) derived from mono and co-firing of Thai lignite and agricultural residues have been investigated. Two sampling methods for PM, total filtration (TF) and electric...Emission factors (EFs) of particulate matter (PM) derived from mono and co-firing of Thai lignite and agricultural residues have been investigated. Two sampling methods for PM, total filtration (TF) and electrical low-pressure impactor (ELPI), were used together. The study is focused on the influence of fuel mass fraction, and of secondary air to total air; SA:TA on EFs of PM. The results have shown that EFs of PM in mass-basis given by TF method are 8.9, 5.3 and 8.1 mg/kgfuel, while 3.3, 2.7 and 3.3 mg/kgfuel when using ELPI, for firing at constant SA:TA (30%) of lignite, rice husk and bagasse, respectively. For co-firing with 30%SA of coal/rice husk, higher EFs of PM is observed. They are 7.17 and 10.9 mg/kgfuel (TF) for 40 and 70% rice husk share, respectively, or 4.18 and 5.19 mg/kgfuel (ELPI). However, lower PM emission; 1-3.3 mg/kgruel (TF) or 0.72-2.83 mg/kgfuel (ELPI) are obtained during co-firing of coal/rice husk with lower degree of air staging (i.e. 0-10% SA:TA). For the influence of oxygenation state, increasing of SA: TA leads to a low formation of ultrafine particles (Dp 〈 0.1 μm). Apart from PM, major gases (CO, NO, SO2) will be documented in this paper.展开更多
The combustion characteristics and particulate emission during combustion of Thai lignite with 30% of secondary air to total air (SA:TA) in a fixed bed combustor have been investigated in real-time. The results hav...The combustion characteristics and particulate emission during combustion of Thai lignite with 30% of secondary air to total air (SA:TA) in a fixed bed combustor have been investigated in real-time. The results have shown that particle formation is governed by competing reaction between the formation of the nucleated sized-particles (Dp 〈 0.1μm) and the coagulated particle (Dp 0.1-1 μm). Temperature and burning rate are the highest priority factors to control the emission of particulate. Furthermore, the co-firing of coal/rice husks at 60:40% mass fraction with 10%SA:TA could be the alternative options to further reduction of particulate and to be recommended.展开更多
文摘Emission factors (EFs) of particulate matter (PM) derived from mono and co-firing of Thai lignite and agricultural residues have been investigated. Two sampling methods for PM, total filtration (TF) and electrical low-pressure impactor (ELPI), were used together. The study is focused on the influence of fuel mass fraction, and of secondary air to total air; SA:TA on EFs of PM. The results have shown that EFs of PM in mass-basis given by TF method are 8.9, 5.3 and 8.1 mg/kgfuel, while 3.3, 2.7 and 3.3 mg/kgfuel when using ELPI, for firing at constant SA:TA (30%) of lignite, rice husk and bagasse, respectively. For co-firing with 30%SA of coal/rice husk, higher EFs of PM is observed. They are 7.17 and 10.9 mg/kgfuel (TF) for 40 and 70% rice husk share, respectively, or 4.18 and 5.19 mg/kgfuel (ELPI). However, lower PM emission; 1-3.3 mg/kgruel (TF) or 0.72-2.83 mg/kgfuel (ELPI) are obtained during co-firing of coal/rice husk with lower degree of air staging (i.e. 0-10% SA:TA). For the influence of oxygenation state, increasing of SA: TA leads to a low formation of ultrafine particles (Dp 〈 0.1 μm). Apart from PM, major gases (CO, NO, SO2) will be documented in this paper.
文摘The combustion characteristics and particulate emission during combustion of Thai lignite with 30% of secondary air to total air (SA:TA) in a fixed bed combustor have been investigated in real-time. The results have shown that particle formation is governed by competing reaction between the formation of the nucleated sized-particles (Dp 〈 0.1μm) and the coagulated particle (Dp 0.1-1 μm). Temperature and burning rate are the highest priority factors to control the emission of particulate. Furthermore, the co-firing of coal/rice husks at 60:40% mass fraction with 10%SA:TA could be the alternative options to further reduction of particulate and to be recommended.