Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce ...Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%.展开更多
Oscillating water column (OWC) based wave energy plants have been designed with several types of bidirectional turbines for converting pneumatic power to shaft power. Impulse turbines with linked guide vanes and fix...Oscillating water column (OWC) based wave energy plants have been designed with several types of bidirectional turbines for converting pneumatic power to shaft power. Impulse turbines with linked guide vanes and fixed guide vanes have been tested at the Indian Wave Energy plant. This was after initial experimentation with Well's turbines. In contrast to the Well's turbine which has a linear damping characteristic, impulse turbines have non-linear damping. This has an important effect in the overall energy conversion from wave to wire. Optimizing the wave energy plant requires a turbine with linear damping and good efficiency over a broad range of flow coefficient. This work describes how such a design can be made using fixed guide vane impulse turbines. The Indian Wave Energy plant is used as a case study.展开更多
文摘Colon cancer is the third most commonly diagnosed cancer in the world.Most colon AdenoCArcinoma(ACA)arises from pre-existing benign polyps in the mucosa of the bowel.Thus,detecting benign at the earliest helps reduce the mortality rate.In this work,a Predictive Modeling System(PMS)is developed for the classification of colon cancer using the Horizontal Voting Ensemble(HVE)method.Identifying different patterns inmicroscopic images is essential to an effective classification system.A twelve-layer deep learning architecture has been developed to extract these patterns.The developedHVE algorithm can increase the system’s performance according to the combined models from the last epochs of the proposed architecture.Ten thousand(10000)microscopic images are taken to test the classification performance of the proposed PMS with the HVE method.The microscopic images obtained from the colon tissues are classified intoACAor benign by the proposed PMS.Results prove that the proposed PMS has∼8%performance improvement over the architecture without using the HVE method.The proposed PMS for colon cancer reduces the misclassification rate and attains 99.2%of sensitivity and 99.4%of specificity.The overall accuracy of the proposed PMS is 99.3%,and without using the HVE method,it is only 91.3%.
文摘Oscillating water column (OWC) based wave energy plants have been designed with several types of bidirectional turbines for converting pneumatic power to shaft power. Impulse turbines with linked guide vanes and fixed guide vanes have been tested at the Indian Wave Energy plant. This was after initial experimentation with Well's turbines. In contrast to the Well's turbine which has a linear damping characteristic, impulse turbines have non-linear damping. This has an important effect in the overall energy conversion from wave to wire. Optimizing the wave energy plant requires a turbine with linear damping and good efficiency over a broad range of flow coefficient. This work describes how such a design can be made using fixed guide vane impulse turbines. The Indian Wave Energy plant is used as a case study.