The kidney is an important organ of humans to purify the blood.The healthy function of the kidney is always essential to balance the salt,potassium and pH levels in the blood.Recently,the failure of kidneys happens ea...The kidney is an important organ of humans to purify the blood.The healthy function of the kidney is always essential to balance the salt,potassium and pH levels in the blood.Recently,the failure of kidneys happens easily to human beings due to their lifestyle,eating habits and diabetes diseases.Early pre-diction of kidney stones is compulsory for timely treatment.Image processing-based diagnosis approaches provide a greater success rate than other detection approaches.In this work,proposed a kidney stone classification method based on optimized Transfer Learning(TL).The Deep Convolutional Neural Network(DCNN)models of DenseNet169,MobileNetv2 and GoogleNet applied for clas-sification.The combined classification results are processed by ensemble learning to increase classification performance.The hyperparameters of the DCNN model are adjusted by the metaheuristic algorithm of Gorilla Troops Optimizer(GTO).The proposed TL model outperforms in terms of all the parameters compared to other DCNN models.展开更多
文摘The kidney is an important organ of humans to purify the blood.The healthy function of the kidney is always essential to balance the salt,potassium and pH levels in the blood.Recently,the failure of kidneys happens easily to human beings due to their lifestyle,eating habits and diabetes diseases.Early pre-diction of kidney stones is compulsory for timely treatment.Image processing-based diagnosis approaches provide a greater success rate than other detection approaches.In this work,proposed a kidney stone classification method based on optimized Transfer Learning(TL).The Deep Convolutional Neural Network(DCNN)models of DenseNet169,MobileNetv2 and GoogleNet applied for clas-sification.The combined classification results are processed by ensemble learning to increase classification performance.The hyperparameters of the DCNN model are adjusted by the metaheuristic algorithm of Gorilla Troops Optimizer(GTO).The proposed TL model outperforms in terms of all the parameters compared to other DCNN models.