Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disper...Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.展开更多
文摘Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.