The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the ...The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal decomposition is improved.展开更多
Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the s...Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51175316,51575331)
文摘The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal decomposition is improved.
基金Supported by National Natural Science Foundation of China(Grant No.51175316)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20103108110006)Basic Research Project of Shanghai Science and Technology Commission,China(Grant No.11JC1404100)
文摘Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.