Aromatic fractions of 140 oils and condensates that originated from different types of source rocks (marine shale,terrestrial shale and marine carbonate) were analyzed using gas chromatographymass spectrometry (GC...Aromatic fractions of 140 oils and condensates that originated from different types of source rocks (marine shale,terrestrial shale and marine carbonate) were analyzed using gas chromatographymass spectrometry (GC-MS) to investigate the relative distributions of methylated dibenzothiophenes with respect to thermal maturity.The positions of methyl groups of trimethyldibenzothiophene isomers (TMDBTs) including those used in the definition of maturity indicator TMDBT index in previous studies were firmly identified by co-elution of internal standards in GC-MS analysis and by comparing with reported retention indices.A new maturity ratio related to dimethyldibenzothiophenes (DMDBTs) is proposed on the basis of the differences in thermodynamic stability among different DMDBT isomers.Another maturity index (TMDBT-I2) based on TMDBTs is also suggested on the basis of our empirical observations and presumed thermodynamic stability of TMDBT isomers.These two newly proposed (2,6 + 3,6)-/1,4-DMDBT ratio and TMDBT-I2 correlate well with MDR (4-/1-methyldibenzothiophene)and 2,4-/1,4-DMDBT ratios,suggesting their common chemical reaction mechanisms and similar behavior with increasing maturity.Therefore,they can be effectively applied for maturity assessments.Furthermore,the TMDBTs related maturity parameters are more reliable for over-mature oils and condensates due to the relatively higher concentrations of thermodynamically unstable TMDBT isomers,i.e.1,4,6-,1,4,8-and 3,4,6-TMDBT in this study than those of 1-methyldibenzothiophene (1-MDBT) or 1,4-DMDBT.In contrast with 4,6-/1,4-DMDBT,the newly proposed (2,6 + 3,6)-/1,4-DMDBT ratios for oils that originated from different types of source rocks have approximately same relationship with the oil maturity (Rc %).This suggests that the lithology and organic facies may have relatively less influence on (2,6 + 3,6)-/1,4-DMDBT ratio compared to 4,6-/1,4-DMDBT.The maturity parameters based on methylated dibenzothiophenes are particularly useful in the maturity assessments of post-and over-mature oils and condensates and can complement maturity indicators based on steranes and terpanes.展开更多
Heavy biodegraded crude oils have larger numbers of coeluting compounds than nonbiodegraded oils, and they are typically not resolved with conventional gas chromatography(GC). This unresolved complex mixture(UCM) ...Heavy biodegraded crude oils have larger numbers of coeluting compounds than nonbiodegraded oils, and they are typically not resolved with conventional gas chromatography(GC). This unresolved complex mixture(UCM) has been investigated using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry(GC×GC-To FMS) within a set of biodegraded petroleums derived from distinct sedimentary basins, including northwestern Sichuan(Neoproterozoic, marine), Tarim(Early Paleozoic, marine), Bohai Bay(Eocene, saline/brackish) and Pearl River Mouth(Eocene, freshwater). In general, the hydrocarbons that constitute the UCM in petroleum saturate fractions can be classified into three catalogues based on the distributions of resolved compounds on two dimensional chromatograms. Group 1 is composed mainly of normal and branched alkanes, isoprenoid alkanes and monocyclic alkanes; Group 2 comprises primarily terpanes ranging from two to five rings, and Group 3 is dominated by monoaromatic hydrocarbons such as tetralins and monoaromatic steranes. In addition, the UCM is source dependent and varies between oil populations. i.e., the UCM of petroleum derived from Precambrian and Early Paleozoic marine, Eocene saline/brackish and freshwater source rocks is specifically rich in higher homologues of A-norsteranes, series of 1,1,3-trimethyl-2-alkylcyclohexanes(carotenoid-derived alkanes), and tetralin and indane compounds, respectively.展开更多
Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source ...Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.展开更多
The main reservoirs of Majiang fossil deposits consist of the Silurian Wengxiang group,dominantly sandstones,and the Ordovician Honghuayuan formation,dominantly carbonate rocks,and the Lower Cambrian Niutitang Formati...The main reservoirs of Majiang fossil deposits consist of the Silurian Wengxiang group,dominantly sandstones,and the Ordovician Honghuayuan formation,dominantly carbonate rocks,and the Lower Cambrian Niutitang Formation mudstones serve as the major source rocks.Thermochemical sulfate reduction(TSR)might have taken place in the Paleozoic marine carbonate oil pools,as indicated by high concentrations of dibenzothiophenes in the extracts(MDBT=0.27 4.32 g/g extract,and MDBT/MPH=0.71 1.38).Hydrocarbons in the Pojiaozhai Ordovician carbonate reservoirs have undergone severe TSR and are characterized by higher quantities of diamondoids and MDBT and heavier isotopic values(13C=28.4‰).The very large amounts of dibenzothiophenes might be products of reactions between biphenyls and sulfur species associated with TSR.展开更多
基金funded by the National Natural Science Foundation of China (Grant No. 41272158)the State Key Laboratory of Petroleum Resources and Prospecting (PRP/indep-2-1302)
文摘Aromatic fractions of 140 oils and condensates that originated from different types of source rocks (marine shale,terrestrial shale and marine carbonate) were analyzed using gas chromatographymass spectrometry (GC-MS) to investigate the relative distributions of methylated dibenzothiophenes with respect to thermal maturity.The positions of methyl groups of trimethyldibenzothiophene isomers (TMDBTs) including those used in the definition of maturity indicator TMDBT index in previous studies were firmly identified by co-elution of internal standards in GC-MS analysis and by comparing with reported retention indices.A new maturity ratio related to dimethyldibenzothiophenes (DMDBTs) is proposed on the basis of the differences in thermodynamic stability among different DMDBT isomers.Another maturity index (TMDBT-I2) based on TMDBTs is also suggested on the basis of our empirical observations and presumed thermodynamic stability of TMDBT isomers.These two newly proposed (2,6 + 3,6)-/1,4-DMDBT ratio and TMDBT-I2 correlate well with MDR (4-/1-methyldibenzothiophene)and 2,4-/1,4-DMDBT ratios,suggesting their common chemical reaction mechanisms and similar behavior with increasing maturity.Therefore,they can be effectively applied for maturity assessments.Furthermore,the TMDBTs related maturity parameters are more reliable for over-mature oils and condensates due to the relatively higher concentrations of thermodynamically unstable TMDBT isomers,i.e.1,4,6-,1,4,8-and 3,4,6-TMDBT in this study than those of 1-methyldibenzothiophene (1-MDBT) or 1,4-DMDBT.In contrast with 4,6-/1,4-DMDBT,the newly proposed (2,6 + 3,6)-/1,4-DMDBT ratios for oils that originated from different types of source rocks have approximately same relationship with the oil maturity (Rc %).This suggests that the lithology and organic facies may have relatively less influence on (2,6 + 3,6)-/1,4-DMDBT ratio compared to 4,6-/1,4-DMDBT.The maturity parameters based on methylated dibenzothiophenes are particularly useful in the maturity assessments of post-and over-mature oils and condensates and can complement maturity indicators based on steranes and terpanes.
基金funded by the National Natural Science Foundation of China(Grant No.41172126)the State Key Laboratory of Petroleum Resources and Prospecting(PRP/indep-2-1402)
文摘Heavy biodegraded crude oils have larger numbers of coeluting compounds than nonbiodegraded oils, and they are typically not resolved with conventional gas chromatography(GC). This unresolved complex mixture(UCM) has been investigated using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry(GC×GC-To FMS) within a set of biodegraded petroleums derived from distinct sedimentary basins, including northwestern Sichuan(Neoproterozoic, marine), Tarim(Early Paleozoic, marine), Bohai Bay(Eocene, saline/brackish) and Pearl River Mouth(Eocene, freshwater). In general, the hydrocarbons that constitute the UCM in petroleum saturate fractions can be classified into three catalogues based on the distributions of resolved compounds on two dimensional chromatograms. Group 1 is composed mainly of normal and branched alkanes, isoprenoid alkanes and monocyclic alkanes; Group 2 comprises primarily terpanes ranging from two to five rings, and Group 3 is dominated by monoaromatic hydrocarbons such as tetralins and monoaromatic steranes. In addition, the UCM is source dependent and varies between oil populations. i.e., the UCM of petroleum derived from Precambrian and Early Paleozoic marine, Eocene saline/brackish and freshwater source rocks is specifically rich in higher homologues of A-norsteranes, series of 1,1,3-trimethyl-2-alkylcyclohexanes(carotenoid-derived alkanes), and tetralin and indane compounds, respectively.
基金funded by National Natural Science Foundation of China(Grant No.42072149)support of US National Science Foundation grant(Grant No.EAR-1255724)。
文摘Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.
基金supported by the State Key Project of Petroleum(2008ZX05005-001-009HZ)the National Natural Science Foundation of China(41172126)+1 种基金the State Key Laboratory of Petroleum Resources and Prospecting(PRP2010-01)the Science Foundation of China University of Petroleum(LLYJ-2011-05 and KYJJ-2012-01-01)
文摘The main reservoirs of Majiang fossil deposits consist of the Silurian Wengxiang group,dominantly sandstones,and the Ordovician Honghuayuan formation,dominantly carbonate rocks,and the Lower Cambrian Niutitang Formation mudstones serve as the major source rocks.Thermochemical sulfate reduction(TSR)might have taken place in the Paleozoic marine carbonate oil pools,as indicated by high concentrations of dibenzothiophenes in the extracts(MDBT=0.27 4.32 g/g extract,and MDBT/MPH=0.71 1.38).Hydrocarbons in the Pojiaozhai Ordovician carbonate reservoirs have undergone severe TSR and are characterized by higher quantities of diamondoids and MDBT and heavier isotopic values(13C=28.4‰).The very large amounts of dibenzothiophenes might be products of reactions between biphenyls and sulfur species associated with TSR.