Laser communication using photons should consider not only the transmission environment’s effects,but also the performance of the single-photon detector used and the photon number distribution.Photon communication ba...Laser communication using photons should consider not only the transmission environment’s effects,but also the performance of the single-photon detector used and the photon number distribution.Photon communication based on the superconducting nanowire single-photon detector(SNSPD)is a new technology that addresses the current sensitivity limitations at the level of single photons in deep space communication.The communication’s bit error rate(BER)is limited by dark noise in the space environment and the photon number distribution with a traditional single-pixel SNSPD,which is unable to resolve the photon number distribution.In this work,an enhanced photon communication method was proposed based on the photon number resolving function of four-pixel array SNSPDs.A simulated picture transmission was carried out,and the error rate in this counting mode can be reduced by 2 orders of magnitude when compared with classical optical communication.However,in the communication mode using photon-enhanced counting,the four-pixel response amplitude for counting was found to restrain the communication rate,and this counting mode is extremely dependent on the incident light intensity through experiments,which limits the sensitivity and speed of the SNSPD array’s performance advantage.Therefore,a BER theoretical calculation model for laser communication was presented using the Bayesian estimation algorithm in order to analyze the selection of counting methods for information acquisition under different light intensities and to make better use of the SNSPD array’s high sensitivity and speed and thus to obtain a lower BER.The counting method and theoretical model proposed in this work refer to array SNSPDs in the deep space field.展开更多
Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors(SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the...Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors(SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the reduced superconducting transition temperature degenerates both operating temperature and saturation efficiency. Herein, the SNSPD(6.5 nm thickness and 50 nm width) based on the amorphous Mo0.8Si0.2 film with a high optical absorption coefficient demonstrates close-to-unity intrinsic detection efficiency for 1550 nm photons from 75 m K to 2.2 K. Further, a high-performance array SNSPD with optimized 90 nm-width wires is also demonstrated. As-fabricated uniform 4-pixel SNSPD exhibits a saturation plateau for the photon counts at 2.2 K,which overcomes the limitation of operation at low temperature(< 1 K) for traditional amorphous SNSPDs.Coupled with superior intrinsic quantum efficiency, highly efficient photon counts, and low dark count ratio, this detector paves a way for achieving high efficiency and superior yield for large array systems.展开更多
基金National Key Research and Development Program of China(2017YFA0304002)National Natural Science Foundation of China(61571217,61521001,61801206,11227904)+1 种基金Priority Academic Program Development of Jiangsu Higher Education InstitutionsNanjing University。
文摘Laser communication using photons should consider not only the transmission environment’s effects,but also the performance of the single-photon detector used and the photon number distribution.Photon communication based on the superconducting nanowire single-photon detector(SNSPD)is a new technology that addresses the current sensitivity limitations at the level of single photons in deep space communication.The communication’s bit error rate(BER)is limited by dark noise in the space environment and the photon number distribution with a traditional single-pixel SNSPD,which is unable to resolve the photon number distribution.In this work,an enhanced photon communication method was proposed based on the photon number resolving function of four-pixel array SNSPDs.A simulated picture transmission was carried out,and the error rate in this counting mode can be reduced by 2 orders of magnitude when compared with classical optical communication.However,in the communication mode using photon-enhanced counting,the four-pixel response amplitude for counting was found to restrain the communication rate,and this counting mode is extremely dependent on the incident light intensity through experiments,which limits the sensitivity and speed of the SNSPD array’s performance advantage.Therefore,a BER theoretical calculation model for laser communication was presented using the Bayesian estimation algorithm in order to analyze the selection of counting methods for information acquisition under different light intensities and to make better use of the SNSPD array’s high sensitivity and speed and thus to obtain a lower BER.The counting method and theoretical model proposed in this work refer to array SNSPDs in the deep space field.
基金National Key Research and Development Program of China (2017YFA0304002)National Natural Science Foundation of China (12033002, 62071218, 61521001, 62071214, 61801206, 11227904)+5 种基金Key-Area Research and Development Program of Guangdong Province(2020B0303020001)Fundamental Research Funds for the Central UniversitiesPriority Academic Program Development of Jiangsu Higher Education InstitutionsRecruitment Program for Young ProfessionalsQing Lan ProjectJiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Waves。
文摘Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors(SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the reduced superconducting transition temperature degenerates both operating temperature and saturation efficiency. Herein, the SNSPD(6.5 nm thickness and 50 nm width) based on the amorphous Mo0.8Si0.2 film with a high optical absorption coefficient demonstrates close-to-unity intrinsic detection efficiency for 1550 nm photons from 75 m K to 2.2 K. Further, a high-performance array SNSPD with optimized 90 nm-width wires is also demonstrated. As-fabricated uniform 4-pixel SNSPD exhibits a saturation plateau for the photon counts at 2.2 K,which overcomes the limitation of operation at low temperature(< 1 K) for traditional amorphous SNSPDs.Coupled with superior intrinsic quantum efficiency, highly efficient photon counts, and low dark count ratio, this detector paves a way for achieving high efficiency and superior yield for large array systems.