期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
通过生物信息学分析肾移植后慢性排斥反应差异表达基因
1
作者 靳帅 余一凡 +2 位作者 宋佳华 李涛 王毅 《海南医学院学报》 CAS 北大核心 2024年第2期120-128,共9页
目的:通过利用生物信息学技术分析肾移植后慢性排斥反应的差异表达基因,可以筛选出与该疾病发展相关的潜在致病靶点,为寻找新的治疗靶点提供了理论依据。方法:从基因表达谱综合数据库下载基因微阵列数据,并进行交叉计算以确定差异表达基... 目的:通过利用生物信息学技术分析肾移植后慢性排斥反应的差异表达基因,可以筛选出与该疾病发展相关的潜在致病靶点,为寻找新的治疗靶点提供了理论依据。方法:从基因表达谱综合数据库下载基因微阵列数据,并进行交叉计算以确定差异表达基因(DEGs)。将DEGs与基因本体(GO)分析是用来研究基因在不同条件下的表达差异以及其功能和相互关系的方法,而京都基因和基因组百科全书(KEGG)富集分析则是用来探索基因在特定生物过程中的功能和通路的工具。通过对免疫细胞浸润的分布进行计算,可以将排斥组的免疫浸润结果作为性状,在加权基因共表达网络分析(WGCNA)中进行分析,以获得与排斥相关的基因。然后,利用STRING数据库和Cytoscape软件构建蛋白质-蛋白质相互作用网络(PPI),以识别枢纽基因标记。结果:从3个数据集(GSE7392、GSE181757、GSE222889)共获得60个整合后的DEGs。通过GO及KEGG分析,GEDs主要集中在免疫应答的调节、防御反应、免疫系统过程的调节、刺激反应等。通路主要富集在抗原处理和呈递、EB病毒感染、移植物抗宿主、同种异体移植排斥、自然杀伤细胞介导的细胞毒性等。再利用WGCNA和PPI网络筛选后,HLA-A、HLA-B、HLA-F、TYROBP被鉴定为枢纽基因(Hub基因)。选择带有临床信息的数据GSE21374构建4个枢纽基因的诊断效能及风险预测模型图,结果认为4个Hub基因均具有良好诊断价值(曲线下面积在0.794-0.819)。从推理上可以得出结论,HLA-A、HLA-B、HLA-F和TYROBP这4种基因可能在肾移植后慢性排斥反应的发生和进展中具有重要作用。结论:DEGs在研究肾移植后慢性排斥反应的发病机制中起到重要作用,可以通过富集分析和枢纽基因筛选,以及相关诊断效能和疾病风险预测的推断分析,为进一步研究肾移植后慢性排斥反应的发病机制和发现新的治疗靶点提供理论支持。 展开更多
关键词 肾脏疾病 肾移植 慢性排斥反应 生物信息学分析 GEO数据库 Hub基因
下载PDF
To analyze the differentially expressed genes in chronic rejection after renal transplantation by bioinformatics
2
作者 JIN Shuai YU Yi-fan +2 位作者 song jia-hua LI Tao WANG Yi 《Journal of Hainan Medical University》 CAS 2024年第2期33-40,共8页
Objective: To use bioinformatics technology to analyse differentially expressed genes in chronic rejection after renal transplantation, we can screen out potential pathogenic targets associated with the development of... Objective: To use bioinformatics technology to analyse differentially expressed genes in chronic rejection after renal transplantation, we can screen out potential pathogenic targets associated with the development of this disease, providing a theoretical basis for finding new therapeutic targets. Methods: Gene microarray data were downloaded from the Gene Expression Profiling Integrated Database (GEO) and cross-calculated to identify differentially expressed genes (DEGs). Analysis of differentially expressed genes (DEGs) with gene ontology (GO) is a method used to study the differences in gene expression under different conditions as well as their functions and interrelationships, while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis is a tool used to explore the functions and pathways of genes in specific biological processes. By calculating the distribution of immune cell infiltration, the result of immune infiltration in the rejection group can be analysed as a trait in Weighted Gene Co-Expression Network Analysis (WGCNA) for genes associated with rejection. Then, protein-protein interaction networks (PPI) were constructed using the STRING database and Cytoscape software to identify hub gene markers. Results: A total of 60 integrated DEGs were obtained from 3 datasets (GSE7392, GSE181757, GSE222889). By GO and KEGG analysis, the GEDs were mainly concentrated in the regulation of immune response, defence response, regulation of immune system processes, and stimulation response. The pathways were mainly enriched in antigen processing and presentation, EBV infection, graft-versus-host, allograft rejection, and natural killer cell-mediated cytotoxicity. After further screening using WGCNA and PPI networks, HLA-A, HLA-B, HLA-F, and TYROBP were identified as hub genes (Hub genes). The data GSE21374 with clinical information was selected to construct the diagnostic efficacy and risk prediction model plots of the four hub genes, and the results concluded that all four Hub genes had good diagnostic value (area under the curve in the range of 0.794-0.819). From the inference, it can be concluded that the four genes, HLA-A, HLA-B, HLA-F and TYROBP, may have an important role in the development and progression of chronic rejection after renal transplantation. Conclusion: DEGs play an important role in the study of the pathogenesis of chronic rejection after renal transplantation, and can provide theoretical support for further research on the pathogenesis of chronic rejection after renal transplantation and the discovery of new therapeutic targets through enrichment analysis and pivotal gene screening, as well as inferential analyses of related diagnostic efficacy and disease risk prediction. 展开更多
关键词 Kidney disease Kidney transplantation Chronic rejection Bioinformatics analysis GEO database Hub gene
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部