Biomarkers had been widely used to reconstruct phytoplankton productivity, and this method was applied in the East China Sea and the Huanghai Sea (Yellow Sea). In this study, Biologic Silicon (BSi) was used as pro...Biomarkers had been widely used to reconstruct phytoplankton productivity, and this method was applied in the East China Sea and the Huanghai Sea (Yellow Sea). In this study, Biologic Silicon (BSi) was used as productivity proxy to reconstruct productivity change of phytoplankton during last 200 years. The results show that the BSi contents of surficial'sediments were in the range of 0.018%-2.516%, averaging 0.726%, and had a similar variation trend with phytoplankton biomass. The vertical distribution profiles revealed that BSi contents were relatively stable, in accordance with the variations of the contemporary phytoplankton standing crop index. According to the stability analysis of BSi in sediments, BSi was not degradaded for the past two hundred years and remained in sediments steadily. Thus, BSi in sediments had the potential to invert paleoproductivity. To conduct further survey, the linear regression equation between BSi contents and phytoplankton biomass index could be used to calculate the phytoplankton productivity by BSi, so that paleoproduetivity may be reconstructed during last 200 years.展开更多
Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN o...Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN on land-ocean interactions associated with marine biogeochemical reaction(LOIMBR) was studied by modeling the load-response relationship based on a three-dimensional water quality model of nitrogen in JZB. The results showed that the stoichiometry on LOIMBR of dissolved organic nitrogen(DON), NO3-N and NH4-N was 3:1:1, with one-third of the contribution on the concentration of dissolved inorganic nitrogen(DIN) in JZB for the land-based DON loads to DIN loads. Based on the stoichiometric relationship of nitrogen forms, the total maximum allocated load(TMAL) of equivalent TDN(ETDN) was approximately 5300 t a^-1 in JZB, equivalent to the TMAL of 5700, 5800 and 15600 t a^-1 for NH4-N, NO3-N and DON, respectively. According to the loads of ETDN, there were four outfalls overloaded in JZB in 2015, which lie in the head of the bay. In the four overloaded outfalls, besides NO3-N, NH4-N was the critical nitrogen control form for Moshui River, while DON for Dagu River and Haibo River. The results of numerical experiments further showed that JZB will achieve good water quality after 7 years by implementation of the 'different emission reduction' based on TMAL of ETDN, which is significantly better than 'equal percent removal'.展开更多
This study investigated the integrated bioremediation techniques for a shrimp culture system to reduce unconsumed feed and the contents of suspended solids(SS), nutrients and organic pollutants using barracuda,clamw...This study investigated the integrated bioremediation techniques for a shrimp culture system to reduce unconsumed feed and the contents of suspended solids(SS), nutrients and organic pollutants using barracuda,clamworm, scallop, large algae and a biofilter. A multi-pool internal circulation system was designed to test the effectiveness of the techniques in the laboratory. The experimental result has shown that Argopecten irradians,Gracilaria lemaneiformis and the biofilter efficiently reduced the contents of SS, dissolved inorganic carbon(DIC)and dissolved organic carbon(DOC) in the breeding wastewater. The amount of unconsumed feed was significantly reduced by barracuda and clamworm, but there was an increase in the contents of SS, DIC and DOC in the water due to disturbance by the barracuda and clamworm. The capacity of macroalgae to extract inorganic nitrogen was insufficient. However, the balance of the nitrogen fixation rate of macroalgae and the biological exhaust nitrogen rate within the system should be fully considered. The use of the biofilter alone was not optimal for the remediation of organic matter in shrimp effluent so that auxiliary foam separation technology is needed to improve the ability of the system to remove macromolecules. This study provides a basis for the further development of remediation techniques to reduce the environmental impact of shrimp aquaculture.展开更多
基金The National Key Basic Research Program of China under contract No.2006CB400007the National Natural Science Foundation of China under contract No.40876088
文摘Biomarkers had been widely used to reconstruct phytoplankton productivity, and this method was applied in the East China Sea and the Huanghai Sea (Yellow Sea). In this study, Biologic Silicon (BSi) was used as productivity proxy to reconstruct productivity change of phytoplankton during last 200 years. The results show that the BSi contents of surficial'sediments were in the range of 0.018%-2.516%, averaging 0.726%, and had a similar variation trend with phytoplankton biomass. The vertical distribution profiles revealed that BSi contents were relatively stable, in accordance with the variations of the contemporary phytoplankton standing crop index. According to the stability analysis of BSi in sediments, BSi was not degradaded for the past two hundred years and remained in sediments steadily. Thus, BSi in sediments had the potential to invert paleoproductivity. To conduct further survey, the linear regression equation between BSi contents and phytoplankton biomass index could be used to calculate the phytoplankton productivity by BSi, so that paleoproduetivity may be reconstructed during last 200 years.
基金supported by the National Natural Science Foundation of China (No.41676062)the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences (No.U1606404)+1 种基金the Key R&D Program of Shandong (No.2018GHY115005)the NSFC-Shandong Joint Fund (No.U1706215)。
文摘Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN on land-ocean interactions associated with marine biogeochemical reaction(LOIMBR) was studied by modeling the load-response relationship based on a three-dimensional water quality model of nitrogen in JZB. The results showed that the stoichiometry on LOIMBR of dissolved organic nitrogen(DON), NO3-N and NH4-N was 3:1:1, with one-third of the contribution on the concentration of dissolved inorganic nitrogen(DIN) in JZB for the land-based DON loads to DIN loads. Based on the stoichiometric relationship of nitrogen forms, the total maximum allocated load(TMAL) of equivalent TDN(ETDN) was approximately 5300 t a^-1 in JZB, equivalent to the TMAL of 5700, 5800 and 15600 t a^-1 for NH4-N, NO3-N and DON, respectively. According to the loads of ETDN, there were four outfalls overloaded in JZB in 2015, which lie in the head of the bay. In the four overloaded outfalls, besides NO3-N, NH4-N was the critical nitrogen control form for Moshui River, while DON for Dagu River and Haibo River. The results of numerical experiments further showed that JZB will achieve good water quality after 7 years by implementation of the 'different emission reduction' based on TMAL of ETDN, which is significantly better than 'equal percent removal'.
基金The National Natural Science Foundation of China under contract No.2006AA10Z415the Public Science and Technology Research Funds Projects of Ocean under contract No.201305005
文摘This study investigated the integrated bioremediation techniques for a shrimp culture system to reduce unconsumed feed and the contents of suspended solids(SS), nutrients and organic pollutants using barracuda,clamworm, scallop, large algae and a biofilter. A multi-pool internal circulation system was designed to test the effectiveness of the techniques in the laboratory. The experimental result has shown that Argopecten irradians,Gracilaria lemaneiformis and the biofilter efficiently reduced the contents of SS, dissolved inorganic carbon(DIC)and dissolved organic carbon(DOC) in the breeding wastewater. The amount of unconsumed feed was significantly reduced by barracuda and clamworm, but there was an increase in the contents of SS, DIC and DOC in the water due to disturbance by the barracuda and clamworm. The capacity of macroalgae to extract inorganic nitrogen was insufficient. However, the balance of the nitrogen fixation rate of macroalgae and the biological exhaust nitrogen rate within the system should be fully considered. The use of the biofilter alone was not optimal for the remediation of organic matter in shrimp effluent so that auxiliary foam separation technology is needed to improve the ability of the system to remove macromolecules. This study provides a basis for the further development of remediation techniques to reduce the environmental impact of shrimp aquaculture.