A neural network methodology is presented to retrieve wind vectors from ERS - 1/2 scatterometer data. The wind directional ambiguities are eliminated by a circular median filter algorithm. All data come from ERS - 1/2...A neural network methodology is presented to retrieve wind vectors from ERS - 1/2 scatterometer data. The wind directional ambiguities are eliminated by a circular median filter algorithm. All data come from ERS - 1/2 scatterometer data collocated pairs with CMCD4 vector. Comparing the results with CMCD4 and ECMWF wind vector,they agree well, which indicates that it is possible to extract wind vector from the ERS-1/2 scatterometer with the neural network method.展开更多
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy a...The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.展开更多
文摘A neural network methodology is presented to retrieve wind vectors from ERS - 1/2 scatterometer data. The wind directional ambiguities are eliminated by a circular median filter algorithm. All data come from ERS - 1/2 scatterometer data collocated pairs with CMCD4 vector. Comparing the results with CMCD4 and ECMWF wind vector,they agree well, which indicates that it is possible to extract wind vector from the ERS-1/2 scatterometer with the neural network method.
基金The National Natural Science Foundation of China under contract No.61001137the Project of Knowledge Innovative Program of the Chinese Academy of Sciences and other projects under contract Nos Y1530151A81530151G4 and Y15102EN00
文摘The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.