目的推动印刷行业朝更高效的方向迈进,提高印刷设备的易操作性和视觉识别性。方法将Kano和FAST(Function Analysis System Technique)模型引入瓦楞纸激光打印设备设计的前期应用需求分析中,通过问卷的方法获取用户的基本要求,并划分为...目的推动印刷行业朝更高效的方向迈进,提高印刷设备的易操作性和视觉识别性。方法将Kano和FAST(Function Analysis System Technique)模型引入瓦楞纸激光打印设备设计的前期应用需求分析中,通过问卷的方法获取用户的基本要求,并划分为几个子类型,进而建立Kano的二维功能属性模型。采用FAST法建立功能树,辅助使用Kano模型,从而更精准地分析用户需求,并更好地根据其需求进行优化设计。结果综合运用设计原理,针对性地挖掘瓦楞纸激光印刷设备在造型识别性、操作易用性、生产安全性上存在的问题,进而输出更优解。结论该设计方法的引入有助于为同类型的印刷设备设计提供参考,并引起更多相关厂家的重视,推动印刷行业向更积极的方向发展。展开更多
In this paper, CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were prepared by direct feeding microwave synthesis method with nine water iron nitrate (Fe(NO<sub>3</sub>)3&bull...In this paper, CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were prepared by direct feeding microwave synthesis method with nine water iron nitrate (Fe(NO<sub>3</sub>)3•9H<sub>2</sub>O), cerium nitrate hexahydrate (Ce(NO<sub>3</sub>)3•6H<sub>2</sub>O) and ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) as raw material and Sodium Dodecyl Sulfate (SDS) as surfactant. Then X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM) were used to observe the CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites. SEM image showed that the as-prepared CeVO<sub>4</sub>/ FeVO<sub>4</sub> nanocomposites calcined at 773 Kis formated of small particles aggregation irregular sheet structure. We studied the photocatalytic activity of the as-prepared samples by using degradation of methyl orange in visible light. The results showed that the photocatalytic activity of CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were very well. It found that when the catalyst calcined at 773 K was 0.10 g, and 0.5 mL hydrogen peroxide joined as well as, pH was 2.0, the degradation ratio of catalyst for methylene orange of 100 mL 5 mg/L reached 98.63% in 40 min.展开更多
Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record supercondu...Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).展开更多
Artificial skin involves multidisciplinary efforts,including materials science,biology,medicine,and tissue engineering.Recent studies have aimed at creating skins that are multifunctional,intelligent,and capable of re...Artificial skin involves multidisciplinary efforts,including materials science,biology,medicine,and tissue engineering.Recent studies have aimed at creating skins that are multifunctional,intelligent,and capable of regenerating tissue.In this work,we present a specialized 3D printing ink composed of polyurethane and bioactive glass(PU-BG)and prepare dual-function skin patch by microfluidic-regulated 3D bioprinting(MRBP)technique.The MRBP endows the skin patch with a highly controlled microstructure and superior strength.Besides,an asymmetric tri-layer is further constructed,which promotes cell attachment and growth through a dual transport mechanism based on hydrogen bonds and gradient structure from hydrophilic to superhydrophilic.More importantly,by combining the features of biomedical skin with electronic skin(e-skin),we achieved a biomedical and electronic dual-function skin patch.In vivo experiments have shown that this skin patch can enhance hemostasis,resist bacterial growth,stimulate the regeneration of blood vessels,and accelerate the healing process.Meanwhile,it also mimics the sensory functions of natural skin to realize signal detection,where the sensitivity reached up to 5.87 kPa1,as well as cyclic stability(over 500 cycles),a wide detection range of 0–150 kPa,high pressure resolution of 0.1%under the pressure of 100 kPa.This work offers a versatile and effective method for creating dual-function skin patches and provide new insights into wound healing and tissue repair,which have significant implications for clinical applications.展开更多
文摘目的推动印刷行业朝更高效的方向迈进,提高印刷设备的易操作性和视觉识别性。方法将Kano和FAST(Function Analysis System Technique)模型引入瓦楞纸激光打印设备设计的前期应用需求分析中,通过问卷的方法获取用户的基本要求,并划分为几个子类型,进而建立Kano的二维功能属性模型。采用FAST法建立功能树,辅助使用Kano模型,从而更精准地分析用户需求,并更好地根据其需求进行优化设计。结果综合运用设计原理,针对性地挖掘瓦楞纸激光印刷设备在造型识别性、操作易用性、生产安全性上存在的问题,进而输出更优解。结论该设计方法的引入有助于为同类型的印刷设备设计提供参考,并引起更多相关厂家的重视,推动印刷行业向更积极的方向发展。
文摘In this paper, CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were prepared by direct feeding microwave synthesis method with nine water iron nitrate (Fe(NO<sub>3</sub>)3•9H<sub>2</sub>O), cerium nitrate hexahydrate (Ce(NO<sub>3</sub>)3•6H<sub>2</sub>O) and ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) as raw material and Sodium Dodecyl Sulfate (SDS) as surfactant. Then X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM) were used to observe the CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites. SEM image showed that the as-prepared CeVO<sub>4</sub>/ FeVO<sub>4</sub> nanocomposites calcined at 773 Kis formated of small particles aggregation irregular sheet structure. We studied the photocatalytic activity of the as-prepared samples by using degradation of methyl orange in visible light. The results showed that the photocatalytic activity of CeVO<sub>4</sub>/FeVO<sub>4</sub> nanocomposites were very well. It found that when the catalyst calcined at 773 K was 0.10 g, and 0.5 mL hydrogen peroxide joined as well as, pH was 2.0, the degradation ratio of catalyst for methylene orange of 100 mL 5 mg/L reached 98.63% in 40 min.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1405500)the National Natural Science Foundation of China (Grant Nos.52372257 and 52072188)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT-15R23)the Zhejiang Provincial Science and Technology Innovation Team (Grant No.2021R01004)。
文摘Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).
基金supported by National Natural Science Foundation of China(22278225,82170581,22308160)Natural Science Foundation of Jiangsu Province(BK20211133,BK20230327)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1471)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Artificial skin involves multidisciplinary efforts,including materials science,biology,medicine,and tissue engineering.Recent studies have aimed at creating skins that are multifunctional,intelligent,and capable of regenerating tissue.In this work,we present a specialized 3D printing ink composed of polyurethane and bioactive glass(PU-BG)and prepare dual-function skin patch by microfluidic-regulated 3D bioprinting(MRBP)technique.The MRBP endows the skin patch with a highly controlled microstructure and superior strength.Besides,an asymmetric tri-layer is further constructed,which promotes cell attachment and growth through a dual transport mechanism based on hydrogen bonds and gradient structure from hydrophilic to superhydrophilic.More importantly,by combining the features of biomedical skin with electronic skin(e-skin),we achieved a biomedical and electronic dual-function skin patch.In vivo experiments have shown that this skin patch can enhance hemostasis,resist bacterial growth,stimulate the regeneration of blood vessels,and accelerate the healing process.Meanwhile,it also mimics the sensory functions of natural skin to realize signal detection,where the sensitivity reached up to 5.87 kPa1,as well as cyclic stability(over 500 cycles),a wide detection range of 0–150 kPa,high pressure resolution of 0.1%under the pressure of 100 kPa.This work offers a versatile and effective method for creating dual-function skin patches and provide new insights into wound healing and tissue repair,which have significant implications for clinical applications.