Global challenges such as climate change,biodiversity loss,and health crises necessitate a shift towards sustainable diets.Incorporating sustainability into food-based dietary guidelines(FBDGs)is essential for this sh...Global challenges such as climate change,biodiversity loss,and health crises necessitate a shift towards sustainable diets.Incorporating sustainability into food-based dietary guidelines(FBDGs)is essential for this shift,and cultural considerations also play a vital role,as food culture significantly influences dietary habits.Considering that Asia and Europe exhibit distinct food cultures,tailored approaches are necessary.Additionally,countries face diverse nutritional challenges,ranging from malnutrition to diet-related diseases,and regional variation in environmental impact necessitates context-specific strategies.Achieving sustainable nutrition depends on understanding cultural influences and regional dynamics.This paper compares China’s and Germany’s dietary guidelines and dietary patterns and their impact on sustainability.It shows that Chinese and German FBDGs only slightly differ,despite the different eating cultures and habits of each country.Alone the recommended amounts for eggs and fish are considerably higher in China than in Germany.However,in both China and Germany,actual dietary patterns deviate from the dietary guidelines.In China,concomitant with economic growth and urbanization,a dietary shift towards increased consumption of animal products and decreased consumption of vegetables and cereals has been observed in the last decades,which has led to a decline in nutritional deficiencies but an increase in obesity and overweight.Obesity and overweight are also on the rise in Germany.A dietary shift could therefore also be beneficial for public health.While following the respective national guidelines would benefit the environment,alternative diets such as a plant-based diet offer even lower environmental footprint.Revising guidelines to prioritize sustainability in addition to health aspects while considering regional contexts and cultural preferences is recommended to foster sustainable eating habits globally.This approach is pivotal for promoting dietary shift towards sustainability on a global scale.展开更多
The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the ...The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.展开更多
There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,...There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China.展开更多
Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce p...Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce precipitation in the arid oasis regions, groundwater plays a key role in restricting the development of the vegetation. The Qira Oasis is located on the southern margin of the Taklimakan Desert (Tarim Basin, China) that is one of the most vulnerable regions regarding vegetation growth and water scarcity in the world. Based on remote sensing images of the Qira Oasis and daily meteorological data measured by the ground stations during the period 2006-2019, this study analyzed the temporal and spatial patterns of NPP in the oasis as well as its relation with the variation of groundwater depth using a modified Carnegie Ames Stanford Approach (CASA) model. At the spatial scale, NPP of the vegetation decreased from the interior of the Qira Oasis to the margin;at the temporal scale, NPP of the vegetation in the oasis fluctuated significantly (ranging from 29.80 to 50.07 g C/(m2•month)) but generally showed an increasing trend, with the average increase rate of 0.07 g C/(m2•month). The regions with decreasing NPP occupied 64% of the total area of the oasis. During the study period, NPP of both farmland and grassland showed an increasing trend, while that of forest showed a decreasing trend. The depth of groundwater was deep in the south of the oasis and shallow in the north, showing a gradual increasing trend from south to north. Groundwater, as one of the key factors in the surface change and evolution of the arid oasis, determines the succession direction of the vegetation in the Qira Oasis. With the increase of groundwater depth, grassland coverage and vegetation NPP decreased. During the period 2008-2015, with the recovery of groundwater level, NPP values of all types of vegetation with different coverages increased. This study will provide a scientific basis for the rational utilization and sustainable management of groundwater resources in the oasis.展开更多
Central Asia is located in the hinterland of Eurasia,comprising Kazakhstan,Uzbekistan,Kyrgyzstan,Turkmenistan,and Tajikistan;over 93.00%of the total area is dryland.Temperature rise and human activities have severe im...Central Asia is located in the hinterland of Eurasia,comprising Kazakhstan,Uzbekistan,Kyrgyzstan,Turkmenistan,and Tajikistan;over 93.00%of the total area is dryland.Temperature rise and human activities have severe impacts on the fragile ecosystems.Since the 1970s,nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities.Water shortage and ecological crisis have attracted extensive international attention.In general,ecosystem services in Central Asia are declining,particularly with respect to biodiversity,water,and soil conservation.Furthermore,the annual average temperature and annual precipitation in Central Asia increased by 0.30℃/decade and 6.9 mm/decade in recent decades,respectively.Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains,which may intensify water shortage in the 21st century.The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia.The population of Central Asia is growing gradually,and its economy is increasing steadily.Moreover,the agricultural land has not been expended in the last two decades.Thus,water and ecological crises,such as the Aral Sea shrinkage in the 21st century,cannot be attributed to agriculture extension any longer.Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds,inducing downstream water shortage and ecological degradation.In addition,accelerated industrialization and urbanization have intensified this process.Therefore,all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.展开更多
Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in v...Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of this project. Precipitation and essential climate variable-soil moisture (ECV-SM) conditions are typically considered to be the main drivers of vegetation growth in this region. Although many studies have investigated the inter-annual variations of vegetation growth, few concerns have been focused on the annual and seasonal variations of vegetation growth and their climatic drivers, which are crucial for understanding the relationships among the climate, vegetation, and human activities at the regional scale. Based on the normalized difference vegetation index (NDVI) derived from MODIS and the corresponding climatic data, we explored the responses of vegetation growth to climatic factors at annual and seasonal scales in the BTSSCP region during the period 2000–2014. Over the study region as a whole, NDVI generally increased from 2000 to 2014, at a rate of 0.002/a. Vegetation growth is stimulated mainly by the elevated temperature in spring, whereas precipitation is the leading driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. The warming in spring promotes vegetation growth but reduces ECV-SM. Summer greening has a strong cooling effect on land surface temperature. These results indicate that the ecological and environmental consequences of ecological restoration projects should be comprehensively evaluated.展开更多
Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementati...Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.展开更多
文摘Global challenges such as climate change,biodiversity loss,and health crises necessitate a shift towards sustainable diets.Incorporating sustainability into food-based dietary guidelines(FBDGs)is essential for this shift,and cultural considerations also play a vital role,as food culture significantly influences dietary habits.Considering that Asia and Europe exhibit distinct food cultures,tailored approaches are necessary.Additionally,countries face diverse nutritional challenges,ranging from malnutrition to diet-related diseases,and regional variation in environmental impact necessitates context-specific strategies.Achieving sustainable nutrition depends on understanding cultural influences and regional dynamics.This paper compares China’s and Germany’s dietary guidelines and dietary patterns and their impact on sustainability.It shows that Chinese and German FBDGs only slightly differ,despite the different eating cultures and habits of each country.Alone the recommended amounts for eggs and fish are considerably higher in China than in Germany.However,in both China and Germany,actual dietary patterns deviate from the dietary guidelines.In China,concomitant with economic growth and urbanization,a dietary shift towards increased consumption of animal products and decreased consumption of vegetables and cereals has been observed in the last decades,which has led to a decline in nutritional deficiencies but an increase in obesity and overweight.Obesity and overweight are also on the rise in Germany.A dietary shift could therefore also be beneficial for public health.While following the respective national guidelines would benefit the environment,alternative diets such as a plant-based diet offer even lower environmental footprint.Revising guidelines to prioritize sustainability in addition to health aspects while considering regional contexts and cultural preferences is recommended to foster sustainable eating habits globally.This approach is pivotal for promoting dietary shift towards sustainability on a global scale.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (XDA20060303)the Xinjiang Key Research and Development Program (2016B02017-4)+1 种基金the National Nature Science Foundation of China-United Nations Environment Programme (NSFC-UNEP, 41361140361)the ''High-level Talents Project'' (Y871171) of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
文摘The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.
基金the National Natural Science Foundation of China(71974176,71473233)the Chinese Academy of Sciences(CAS)"Light of West China"Program(2018-XBQNXZ-B-017)+1 种基金the High Level Talent Introduction Project of Xinjiang Uygur Autonomous Region(Y942171)the"High Talents Program of Xinjiang Institute of Ecology and Geography,CAS"(Y871171).
文摘There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China.
基金This research was supported by the West Light Foundation of the Chinese Academy of Sciences(2018-XBQNXZ-B-017)the High-Level Talents Project in Xinjiang(Y942171)This study was also supported by the CAS President's International Fellowship Initiative(PIFI)Project(2021VCA0003,2021VCB0013).
文摘Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce precipitation in the arid oasis regions, groundwater plays a key role in restricting the development of the vegetation. The Qira Oasis is located on the southern margin of the Taklimakan Desert (Tarim Basin, China) that is one of the most vulnerable regions regarding vegetation growth and water scarcity in the world. Based on remote sensing images of the Qira Oasis and daily meteorological data measured by the ground stations during the period 2006-2019, this study analyzed the temporal and spatial patterns of NPP in the oasis as well as its relation with the variation of groundwater depth using a modified Carnegie Ames Stanford Approach (CASA) model. At the spatial scale, NPP of the vegetation decreased from the interior of the Qira Oasis to the margin;at the temporal scale, NPP of the vegetation in the oasis fluctuated significantly (ranging from 29.80 to 50.07 g C/(m2•month)) but generally showed an increasing trend, with the average increase rate of 0.07 g C/(m2•month). The regions with decreasing NPP occupied 64% of the total area of the oasis. During the study period, NPP of both farmland and grassland showed an increasing trend, while that of forest showed a decreasing trend. The depth of groundwater was deep in the south of the oasis and shallow in the north, showing a gradual increasing trend from south to north. Groundwater, as one of the key factors in the surface change and evolution of the arid oasis, determines the succession direction of the vegetation in the Qira Oasis. With the increase of groundwater depth, grassland coverage and vegetation NPP decreased. During the period 2008-2015, with the recovery of groundwater level, NPP values of all types of vegetation with different coverages increased. This study will provide a scientific basis for the rational utilization and sustainable management of groundwater resources in the oasis.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences:the Pan-Third Pole Environment Study for a Green Silk Road(XDA20060303)the CAS''Light of West China''Program(2018-XBQNXZ-B-017)the''High-level Talents Program''of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(Y871171).Special thanks are given to the Philosophy and Social Science Major Research Project"Research on the Major Risk Prevention System in the Development of Artificial Intelligence"(20JZD026)funded by the Ministry of Education of the People's Republic of China.
文摘Central Asia is located in the hinterland of Eurasia,comprising Kazakhstan,Uzbekistan,Kyrgyzstan,Turkmenistan,and Tajikistan;over 93.00%of the total area is dryland.Temperature rise and human activities have severe impacts on the fragile ecosystems.Since the 1970s,nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities.Water shortage and ecological crisis have attracted extensive international attention.In general,ecosystem services in Central Asia are declining,particularly with respect to biodiversity,water,and soil conservation.Furthermore,the annual average temperature and annual precipitation in Central Asia increased by 0.30℃/decade and 6.9 mm/decade in recent decades,respectively.Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains,which may intensify water shortage in the 21st century.The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia.The population of Central Asia is growing gradually,and its economy is increasing steadily.Moreover,the agricultural land has not been expended in the last two decades.Thus,water and ecological crises,such as the Aral Sea shrinkage in the 21st century,cannot be attributed to agriculture extension any longer.Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds,inducing downstream water shortage and ecological degradation.In addition,accelerated industrialization and urbanization have intensified this process.Therefore,all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.
基金financially supported by the National Natural Science Foundation of China (31560135, 41361100)the Discipline Construction Fund Project of Gansu Agricultural University (GAU-XKJS-2018-104, GAU-XKJS-2018-108)the Gansu Science and Technology Support Program (1604FKCA088)
文摘Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of this project. Precipitation and essential climate variable-soil moisture (ECV-SM) conditions are typically considered to be the main drivers of vegetation growth in this region. Although many studies have investigated the inter-annual variations of vegetation growth, few concerns have been focused on the annual and seasonal variations of vegetation growth and their climatic drivers, which are crucial for understanding the relationships among the climate, vegetation, and human activities at the regional scale. Based on the normalized difference vegetation index (NDVI) derived from MODIS and the corresponding climatic data, we explored the responses of vegetation growth to climatic factors at annual and seasonal scales in the BTSSCP region during the period 2000–2014. Over the study region as a whole, NDVI generally increased from 2000 to 2014, at a rate of 0.002/a. Vegetation growth is stimulated mainly by the elevated temperature in spring, whereas precipitation is the leading driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. The warming in spring promotes vegetation growth but reduces ECV-SM. Summer greening has a strong cooling effect on land surface temperature. These results indicate that the ecological and environmental consequences of ecological restoration projects should be comprehensively evaluated.
基金supported by German-Sino bilateral collaboration research project SuMaRiO funded by the German Federal Ministry of Education and Researchthe support of NSFC-UNEP Project (41361140361): Ecological Responses to Climatic Change and Land-cover Change in Arid and Semiarid Central Asia during the Past 500 Years
文摘Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.