Enhanced light-matter interactions are the basis of surface-enhanced infrared absorption(SEIRA)spectroscopy,and conventionally rely on plasmonic materials and their capability to focus light to nanoscale spot sizes.Ph...Enhanced light-matter interactions are the basis of surface-enhanced infrared absorption(SEIRA)spectroscopy,and conventionally rely on plasmonic materials and their capability to focus light to nanoscale spot sizes.Phonon polariton nanoresonators made of polar crystals could represent an interesting alternative,since they exhibit large quality factors,which go far beyond those of their plasmonic counterparts.The recent emergence of van der Waals crystals enables the fabrication of highquality nanophotonic resonators based on phonon polaritons,as reported for the prototypical infrared-phononic material hexagonal boron nitride(h-BN).In this work we use,for the first time,phonon-polariton-resonant h-BN ribbons for SEIRA spectroscopy of small amounts of organic molecules in Fourier transform infrared spectroscopy.Strikingly,the interaction between phonon polaritons and molecular vibrations reaches experimentally the onset of the strong coupling regime,while numerical simulations predict that vibrational strong coupling can be fully achieved.Phonon polariton nanoresonators thus could become a viable platform for sensing,local control of chemical reactivity and infrared quantum cavity optics experiments.展开更多
基金support from the European Commission under the Graphene Flagship(GrapheneCore1,Grant no.696656)the Marie Sklodowska-Curie individual fellowship(SGPCM-705960)+4 种基金the Spanish Ministry of Economy and Competitiveness(Maria de Maetzu Units of Excellence Programme MDM-2016-0618 and national projects FIS2014-60195-JIN,MAT2014-53432-C5-4-R,MAT2015-65525-R,MAT2015-65159-R,FIS2016-80174-P,MAT2017-88358-C3-3-R)the Basque government(PhD fellowship PRE-2016-1-0150,PRE-2016-2-0025)the Department of Industry of the Basque Government(ELKARTEK project MICRO4FA)the Regional Council of Gipuzkoa(project no.100/16)the ERC starting grant 715496,2DNANOPTICA.
文摘Enhanced light-matter interactions are the basis of surface-enhanced infrared absorption(SEIRA)spectroscopy,and conventionally rely on plasmonic materials and their capability to focus light to nanoscale spot sizes.Phonon polariton nanoresonators made of polar crystals could represent an interesting alternative,since they exhibit large quality factors,which go far beyond those of their plasmonic counterparts.The recent emergence of van der Waals crystals enables the fabrication of highquality nanophotonic resonators based on phonon polaritons,as reported for the prototypical infrared-phononic material hexagonal boron nitride(h-BN).In this work we use,for the first time,phonon-polariton-resonant h-BN ribbons for SEIRA spectroscopy of small amounts of organic molecules in Fourier transform infrared spectroscopy.Strikingly,the interaction between phonon polaritons and molecular vibrations reaches experimentally the onset of the strong coupling regime,while numerical simulations predict that vibrational strong coupling can be fully achieved.Phonon polariton nanoresonators thus could become a viable platform for sensing,local control of chemical reactivity and infrared quantum cavity optics experiments.