Seven transition metal complexes of Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup> with 3-aminopyridine (3-APy) as li...Seven transition metal complexes of Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup> with 3-aminopyridine (3-APy) as ligand have been synthesized, characterized by different techniques and their antibacterial activities were studied. Molecular modeling calculations were performed using DMOL<sup>3</sup> program in materials studio package which is designed for the realization of large scale density functional theory calculation (DFT). The quantum mechanical and chemical reactivity parameters such as chemical hardness, chemical potential, electronegativity, electrophilicity index and Homo-Lumo energy gap were obtained theoretically and were used to understand the biological activity of the prepared compounds. Some complexes were tested for their in-vitro cytotoxic activity in human lung cancer cell lines (A-549 cell line), and structureactivity relationships were established. In general, the coordination to Co<sup>2+</sup> increased the cytotoxicity while the Ni<sup>2+</sup> complexes show reduced cytotoxic activity compared to the metal-free 3-aminopyridine.展开更多
文摘Seven transition metal complexes of Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup> with 3-aminopyridine (3-APy) as ligand have been synthesized, characterized by different techniques and their antibacterial activities were studied. Molecular modeling calculations were performed using DMOL<sup>3</sup> program in materials studio package which is designed for the realization of large scale density functional theory calculation (DFT). The quantum mechanical and chemical reactivity parameters such as chemical hardness, chemical potential, electronegativity, electrophilicity index and Homo-Lumo energy gap were obtained theoretically and were used to understand the biological activity of the prepared compounds. Some complexes were tested for their in-vitro cytotoxic activity in human lung cancer cell lines (A-549 cell line), and structureactivity relationships were established. In general, the coordination to Co<sup>2+</sup> increased the cytotoxicity while the Ni<sup>2+</sup> complexes show reduced cytotoxic activity compared to the metal-free 3-aminopyridine.