期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MLA:A New Mutated Leader Algorithm for Solving Optimization Problems 被引量:2
1
作者 Fatemeh Ahmadi Zeidabadi sajjad amiri doumari +3 位作者 Mohammad Dehghani Zeinab Montazeri Pavel Trojovsky Gaurav Dhiman 《Computers, Materials & Continua》 SCIE EI 2022年第3期5631-5649,共19页
Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algo... Optimization plays an effective role in various disciplines of science and engineering.Optimization problems should either be optimized using the appropriate method(i.e.,minimization or maximization).Optimization algorithms are one of the efficient and effective methods in providing quasioptimal solutions for these type of problems.In this study,a new algorithm called the Mutated Leader Algorithm(MLA)is presented.The main idea in the proposed MLA is to update the members of the algorithm population in the search space based on the guidance of a mutated leader.In addition to information about the best member of the population,themutated leader also contains information about the worst member of the population,as well as other normal members of the population.The proposed MLA is mathematically modeled for implementation on optimization problems.A standard set consisting of twenty-three objective functions of different types of unimodal,fixed-dimensional multimodal,and high-dimensional multimodal is used to evaluate the ability of the proposed algorithm in optimization.Also,the results obtained from theMLA are compared with eight well-known algorithms.The results of optimization of objective functions show that the proposed MLA has a high ability to solve various optimization problems.Also,the analysis and comparison of the performance of the proposed MLA against the eight compared algorithms indicates the superiority of the proposed algorithm and ability to provide more suitable quasi-optimal solutions. 展开更多
关键词 OPTIMIZATION metaheuristics LEADER BENCHMARK objective function
下载PDF
AMBO:All Members-Based Optimizer for Solving Optimization Problems 被引量:1
2
作者 Fatemeh Ahmadi Zeidabadi sajjad amiri doumari +3 位作者 Mohammad Dehghani Zeinab Montazeri Pavel Trojovsky Gaurav Dhiman 《Computers, Materials & Continua》 SCIE EI 2022年第2期2905-2921,共17页
There are many optimization problems in different branches of science that should be solved using an appropriate methodology.Populationbased optimization algorithms are one of the most efficient approaches to solve th... There are many optimization problems in different branches of science that should be solved using an appropriate methodology.Populationbased optimization algorithms are one of the most efficient approaches to solve this type of problems.In this paper,a new optimization algorithm called All Members-Based Optimizer(AMBO)is introduced to solve various optimization problems.The main idea in designing the proposedAMBOalgorithm is to use more information from the population members of the algorithm instead of just a few specific members(such as best member and worst member)to update the population matrix.Therefore,in AMBO,any member of the population can play a role in updating the population matrix.The theory of AMBO is described and then mathematically modeled for implementation on optimization problems.The performance of the proposed algorithm is evaluated on a set of twenty-three standard objective functions,which belong to three different categories:unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions.In order to analyze and compare the optimization results for the mentioned objective functions obtained by AMBO,eight other well-known algorithms have been also implemented.The optimization results demonstrate the ability of AMBO to solve various optimization problems.Also,comparison and analysis of the results show that AMBO is superior andmore competitive than the other mentioned algorithms in providing suitable solution. 展开更多
关键词 Algorithm all members optimization optimization algorithm optimization problem population-based algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部