Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells.The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high ...Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells.The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high affinity adenosine triphosphate(ATP)binding site and analyzed absorption,distribution,metabolism,excretion and toxicity(ADME-toxicity).The molecular docking analysis revealed that the flavanols showed competitive inhibition with ATP molecule at the active site and enhanced pharmacological parameters.展开更多
Tuberculosis is thought to have infected one-third of the world’s population and antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). It...Tuberculosis is thought to have infected one-third of the world’s population and antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). It has been reported that Mycobacterial cell walls are characterized by high DAP (diaminopimelic acid) content—an intermediate of the (S)-lysine biosynthetic pathway. Hence, the Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In this study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sps. 201 against dihydrodipicolinate synthase (DHDPS) enzyme of Mycobacterium tuberculosis. The docking studies suggest that the novel molecule binds at active site LYS 171 forming a cleft and at other potential ligand binding site exhibiting all the major interactions such as hydrogen bonding, hydrophobic interaction and electrostatic interaction with (THR55, TYR143, ARG148, LYS171, VAL257 and GLY256) residues.展开更多
文摘Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells.The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high affinity adenosine triphosphate(ATP)binding site and analyzed absorption,distribution,metabolism,excretion and toxicity(ADME-toxicity).The molecular docking analysis revealed that the flavanols showed competitive inhibition with ATP molecule at the active site and enhanced pharmacological parameters.
文摘Tuberculosis is thought to have infected one-third of the world’s population and antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). It has been reported that Mycobacterial cell walls are characterized by high DAP (diaminopimelic acid) content—an intermediate of the (S)-lysine biosynthetic pathway. Hence, the Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In this study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sps. 201 against dihydrodipicolinate synthase (DHDPS) enzyme of Mycobacterium tuberculosis. The docking studies suggest that the novel molecule binds at active site LYS 171 forming a cleft and at other potential ligand binding site exhibiting all the major interactions such as hydrogen bonding, hydrophobic interaction and electrostatic interaction with (THR55, TYR143, ARG148, LYS171, VAL257 and GLY256) residues.