In this paper, we provide a new approach to solve approximately a system of fractional differential equations (FDEs). We extend this approach for approximately solving a fractional-order differential equation model of...In this paper, we provide a new approach to solve approximately a system of fractional differential equations (FDEs). We extend this approach for approximately solving a fractional-order differential equation model of HIV infection of CD4<sup>+</sup>T cells with therapy effect. The fractional derivative in our approach is in the sense of Riemann-Liouville. To solve the problem, we reduce the system of FDE to a discrete optimization problem. By obtaining the optimal solutions of new problem by minimization the total errors, we obtain the approximate solution of the original problem. The numerical solutions obtained from the proposed approach indicate that our approximation is easy to implement and accurate when it is applied to a systems of FDEs.展开更多
In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable bu...In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a functional optimization problem corresponding to smooth functions where its optimal solutions are the first and second derivatives of these functions in a domain. Then by applying these functional optimization problems for non-smooth functions and using this method we obtain generalized first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is approximated with a linear programming problem that by solving of which, we can obtain these derivatives, as simple as possible. We extend this approach for obtaining generalized high order derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our approach some numerical examples have been presented.展开更多
文摘In this paper, we provide a new approach to solve approximately a system of fractional differential equations (FDEs). We extend this approach for approximately solving a fractional-order differential equation model of HIV infection of CD4<sup>+</sup>T cells with therapy effect. The fractional derivative in our approach is in the sense of Riemann-Liouville. To solve the problem, we reduce the system of FDE to a discrete optimization problem. By obtaining the optimal solutions of new problem by minimization the total errors, we obtain the approximate solution of the original problem. The numerical solutions obtained from the proposed approach indicate that our approximation is easy to implement and accurate when it is applied to a systems of FDEs.
文摘In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a functional optimization problem corresponding to smooth functions where its optimal solutions are the first and second derivatives of these functions in a domain. Then by applying these functional optimization problems for non-smooth functions and using this method we obtain generalized first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is approximated with a linear programming problem that by solving of which, we can obtain these derivatives, as simple as possible. We extend this approach for obtaining generalized high order derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our approach some numerical examples have been presented.