期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Potential Driving Systems Associated with Extreme Rainfall across East Africa during October to December (OND) Season 2019
1
作者 Constantine Ingeri Wang Wen +5 位作者 Joseph Ndakize Sebaziga Vedaste Iyakaremye samuel ekwacu Prosper Ayabagabo Anthony Twahirwa Jonah Kazora 《Journal of Geoscience and Environment Protection》 2024年第7期25-49,共25页
The East African (EA) region highly experiences intra-seasonal and inter-annual variation in rainfall amounts. This study investigates the driving factors for anomalous rainfall events observed during the season of Oc... The East African (EA) region highly experiences intra-seasonal and inter-annual variation in rainfall amounts. This study investigates the driving factors for anomalous rainfall events observed during the season of October-November-December (OND) 2019 over the region. The study utilized daily rainfall data from Climate Hazards Group InfraRed Precipitation with Station Data Version 2 (CHIRPSv2) and the driving systems data. Statistical spatiotemporal analysis, correlation, and composite techniques were performed to investigate the teleconnection between OND 2019 seasonal rainfall and global synoptic climate systems. The findings showed that the OND 2019 experienced seasonal rainfall that was twice or greater than its seasonal climatology and varied with location. Further, the OND 2019 rainfall showed a positive correlation with the Indian Ocean Dipole (IOD) (0.81), Nino 3 (0.51), Nino 3.4 (0.47), Nino 4 (0.40), Pacific Decadal Oscillation (PDO) (0.22), and North Tropical Atlantic (NTA) (0.02), while El Nino-Southern Oscillation (ENSO) showed a negative correlation (−0.30). The region was dominated by southeasterly warming and humid winds that originated from the Indian Ocean, while the geopotential height, vertical velocity, and vorticity anomalies were closely related to the anomalous rainfall characteristics. The study deduced that the IOD was the major synoptic system that influenced maximum rainfall during the peak season of OND 2019. This study therefore provided insights on the diagnosis study of OND 2019 anomalous rainfall and its attribution over the EA. The findings of the study will contribute to improvements in forecasting seasonal rainfall by regional climate centers and national meteorological centers within the region. 展开更多
关键词 East Africa Driving Climate Systems October-November-December (OND) 2019 Rainfall
下载PDF
Analysis of Changes of Extreme Temperature during June to August Season over Tanzania
2
作者 Justus Renatus Mbawala Huixin Li +5 位作者 Jiani Zeng Daudi Mikidadi Ndabagenga Anqin Tan Daniela Janine Beukes Praksed Mrosso Rafael samuel ekwacu 《Journal of Geoscience and Environment Protection》 2024年第2期44-56,共13页
Natural and human systems are exposed and vulnerable to climate extremes, which contributes to the repercussions of climate variability and the probability of disasters. The impacts of both natural and human-caused cl... Natural and human systems are exposed and vulnerable to climate extremes, which contributes to the repercussions of climate variability and the probability of disasters. The impacts of both natural and human-caused climate variability are reflected in the reported changes in climate extremes. Particularly at the local community levels in the majority of the regions, there is currently a dearth of information regarding the distribution, dynamics, and trends of excessive temperatures among the majority of Tanzanians. Over the years 1982-2022, this study examined trends in Tanzania’s extreme temperature over the June to August season. Based on the distinction between absolute and percentile extreme temperatures, a total of eight ETCCDI climate indices were chosen. Mann-Kendall test was used to assess the presence of trends in extreme climatic indices and the Sen’s Slope was applied to compute the extent of the trends in temperature extremes. The study showed that in most regions, there is significant increase of warm days and nights while the significant decrease of cold days and nights was evident to most areas. Moreover, nighttime warming surpasses daytime warming in the study area. The study suggests that anthropogenic influences may contribute to the warming trend observed in extreme daily minimum and maximum temperatures globally, with Tanzania potentially affected, as indicated in the current research. The overall results of this study reflect patterns observed in various regions worldwide, where warm days and nights are on the rise while cold days and nights are diminishing. 展开更多
关键词 Indices Warm Days and Nights Cold Days and Nights ECA&D Tanzania
下载PDF
Correlation of Rainfall Anomalies in Rwanda from September to December (SOND) with Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) Events
3
作者 Frank Rusanganwa Ling Zhang +2 位作者 Jonah Kazora Joseph Ndakize Sebaziga samuel ekwacu 《Journal of Geoscience and Environment Protection》 2024年第6期115-134,共20页
Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga... Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years. 展开更多
关键词 CORRELATION Rainfall Anomalies Rwanda Indian Ocean Dipole El Nino Southern Oscillation
下载PDF
Change in the Number of Tropical Cyclone Landfall and Approach over Mozambique from 1980 to 2020
4
作者 Dinis Chichava Jinhua Yu +1 位作者 Philemon Henry King’uza samuel ekwacu 《Journal of Geoscience and Environment Protection》 2024年第10期1-20,共20页
In this study, the variability of tropical cyclone (TC) landfall and approach over Mozambique as well as the environmental factors influencing were investigated. The frequencies of tropical cyclone landfall and approa... In this study, the variability of tropical cyclone (TC) landfall and approach over Mozambique as well as the environmental factors influencing were investigated. The frequencies of tropical cyclone landfall and approach as well as environmental factors were compared between the two periods (1980 to 1999 and 2000 to 2020). This study found that, according to International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone data, the number of tropical cyclones making landfall over Mozambique increased by about 66% in the second period (2000-2020), compared to 34% in the first period (1980-1999). While the number of tropical cyclone approaches reduced from 59% in the first period to 41% in the second period. An assessment of the environmental conditions showed that warmer sea surface temperature (SST) and low vertical wind shear (VWS) were favorable to more TC genesis and, consequently, an increase in landfalls and a reduction in TC confined to the approach. 展开更多
关键词 Mozambique Tropical Cyclone Landfall Tropical Cyclone Approach Environmental Conditions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部