Wood plays a major role in land ecosystems and in human activity. Better understanding the genetic basis and evolutionary implication of wood variability are thus key issues with both ecological and economical implica...Wood plays a major role in land ecosystems and in human activity. Better understanding the genetic basis and evolutionary implication of wood variability are thus key issues with both ecological and economical implications. The present paper addresses the question of the extending and the nature of natural selection on wood related genes in Eucalyptus urophylla, a tropical tree species with key economical importance. We conducted a genetic study on an E. urophylla population from Timor Island using a set of 17 SSR characterized on a main sample of 43 individuals and six candidate genes sequenced on a subset of 18 individuals. The candidate genes include three cellulose synthase genes (EuCesA1, EuCesA2 and EuCesA3), and three genes involved in lignin synthesis (EuCAD2, EuC4H1 and EuC4H2). Based on SSR data, the investigated population appeared to have no structure and have undergone past population expansion. Accounting for this demographic history, we were able to draw neutral expectation for polymorphism distribution on candidate genes and to determine their potential selective status. We hence identified two gene portions exhibiting unexpected polymorphism pattern, consistent with natural selection imprint.展开更多
文摘Wood plays a major role in land ecosystems and in human activity. Better understanding the genetic basis and evolutionary implication of wood variability are thus key issues with both ecological and economical implications. The present paper addresses the question of the extending and the nature of natural selection on wood related genes in Eucalyptus urophylla, a tropical tree species with key economical importance. We conducted a genetic study on an E. urophylla population from Timor Island using a set of 17 SSR characterized on a main sample of 43 individuals and six candidate genes sequenced on a subset of 18 individuals. The candidate genes include three cellulose synthase genes (EuCesA1, EuCesA2 and EuCesA3), and three genes involved in lignin synthesis (EuCAD2, EuC4H1 and EuC4H2). Based on SSR data, the investigated population appeared to have no structure and have undergone past population expansion. Accounting for this demographic history, we were able to draw neutral expectation for polymorphism distribution on candidate genes and to determine their potential selective status. We hence identified two gene portions exhibiting unexpected polymorphism pattern, consistent with natural selection imprint.