●AIM:To compare the success rate and complications of adjuvant use of mitomycin C and triamcinoloneimpregnated biodegradable nasal packing(TABP)in endoscopic dacryocystorhinostomy(DCR).And to evaluate the efficacy of...●AIM:To compare the success rate and complications of adjuvant use of mitomycin C and triamcinoloneimpregnated biodegradable nasal packing(TABP)in endoscopic dacryocystorhinostomy(DCR).And to evaluate the efficacy of combining intraoperative mitomycin C and TABP for endoscopic DCR.●METHODS:A total of 198 eyes of 148 patients who underwent endoscopic DCR for acquired nasolacrimal duct obstruction were retrospectively analysed.The patients were randomly divided into three groups:Group A included patients treated without intraoperative mitomycin C but with TABP,Group B included patients treated without triamcinolone but with intraoperative mitomycin C and normal saline-impregnated nasal packing,and Group C included patients treated with intraoperative mitomycin C and TABP.●RESULTS:The results revealed no significant difference in the overall success rates between Groups A(86.8%)and B(89.2%;P=0.377).However,Group C(97.5%)showed a significantly higher overall success rate than Groups A and B.The incidence of granulomas was significantly lower in group C(5%)than in Groups A(20.8%)and B(15.2%;P=0.009).Other complications,such as crust,synechiae,and revision surgery,did not differ significantly among the three groups.●CONCLUSION:The combination of intraoperative mitomycin C and TABP effectively prevents granulomas and enhances surgical success rate.Additionally,there is no statistically significant difference observed between the use of mitomycin C or TABP alone.展开更多
Dear Editor,Macular hole(MH)formation is uncommon in patients with diabetic macular edema(DME).Few cases of MH associated with DME treatment have been described,including a report of four out of eight eyes with MH and...Dear Editor,Macular hole(MH)formation is uncommon in patients with diabetic macular edema(DME).Few cases of MH associated with DME treatment have been described,including a report of four out of eight eyes with MH and diabetic retinopathy(DR)having DME[1].However,no case of resolution of MH after DME treatment has been reported.We report three consecutive cases of MH closure achieved by intravitreal injection for DME treatment.展开更多
Monolayer barriers called evapotranspiration (ET) covers were developed as alternative final cover systems in waste landfills but high-quality soil remains a limiting factor in these cover systems. Coal bottom ash was...Monolayer barriers called evapotranspiration (ET) covers were developed as alternative final cover systems in waste landfills but high-quality soil remains a limiting factor in these cover systems. Coal bottom ash was evaluated to be a very good alternative to soil in previous tests and a combination of soil (65% wt.wt-1) and coal bottom ash (35% wt.wt-1) was evaluated to be the most feasible materials for ET cover systems. In our pot test, selected manure compost as soil amendment for the composite ET cover system, which was made of soil and bottom ash at ca. 40 Mg.ha-1 application level was very effective to promote vegetation growth of three plants;namely, garden cosmos (Cosmosbipinnatus), Chinese bushclover (Lespedezacuneata), and leafy lespedeza (Lespedeza cyrtobotrya). To evaluate the effect of compost application on plant growth in an ET vegetative cover system, two couples of lysimeters, packed with soil and a mixture of soil and bottom ash, were installed in a pilot landfill cover system in 2007. Manure composts were applied at the rates of 0 and ?40 Mg.ha-11before sowing the five plant species, i.e.indigo-bush (Amorphafruticosa), Japanese mugwort (Artemisia princeps, Arundinella hirta, Lespedezacuneata, and Lespedezacyrtobotrya). Unseeded native plant (green foxtail,Setaria viridis) was dominant in all treatments in the 1st year after installation while the growth of the sown plants significantly improved over the years. Total biomass productivity significantly increased with manure compost application, and more significantly increased in the composite ET cover made of soil and bottom ash treatment compared to the single soil ET cover, mainly due to more improved soil nutrient levels promoting vegetation growth and maintaining the vegetation system. The use of bottom ash as a mixing material in ET cover systems has a strong potential as an alternative to fine-grained soils, and manure compost addition can effectively enhance vegetative propagation in ET cover systems.展开更多
Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance.In particular,tumor-associated macrophages(TAMs),as the predomin...Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance.In particular,tumor-associated macrophages(TAMs),as the predominant infiltrated immune cells in a tumor,play a pivotal role in regulating the immunosuppressive tumor microenvironment.As a potential therapeutic strategy to counteract TAMs,here we explore an exosome-guided in situ direct reprogramming of tumor-supportive M2-polarized TAMs into tumor-attacking M1-type macrophages.Exosomes derived from M1-type macrophages(M1-Exo)promote a phenotypic switch from anti-inflammatory M2-like TAMs toward pro-inflammatory M1-type macrophages with high conversion efficiency.Reprogrammed M1 macrophages possessing protein-expression profiles similar to those of classically activated M1 macrophages display significantly increased phagocytic function and robust cross-presentation ability,potentiating antitumor immunity surrounding the tumor.Strikingly,these M1-Exo also lead to the conversion of human patient-derived TAMs into M1-like macrophages that highly express MHC class II,offering the clinical potential of autologous and allogeneic exosome-guided direct TAM reprogramming for arming macrophages to join the fight against cancer.展开更多
文摘●AIM:To compare the success rate and complications of adjuvant use of mitomycin C and triamcinoloneimpregnated biodegradable nasal packing(TABP)in endoscopic dacryocystorhinostomy(DCR).And to evaluate the efficacy of combining intraoperative mitomycin C and TABP for endoscopic DCR.●METHODS:A total of 198 eyes of 148 patients who underwent endoscopic DCR for acquired nasolacrimal duct obstruction were retrospectively analysed.The patients were randomly divided into three groups:Group A included patients treated without intraoperative mitomycin C but with TABP,Group B included patients treated without triamcinolone but with intraoperative mitomycin C and normal saline-impregnated nasal packing,and Group C included patients treated with intraoperative mitomycin C and TABP.●RESULTS:The results revealed no significant difference in the overall success rates between Groups A(86.8%)and B(89.2%;P=0.377).However,Group C(97.5%)showed a significantly higher overall success rate than Groups A and B.The incidence of granulomas was significantly lower in group C(5%)than in Groups A(20.8%)and B(15.2%;P=0.009).Other complications,such as crust,synechiae,and revision surgery,did not differ significantly among the three groups.●CONCLUSION:The combination of intraoperative mitomycin C and TABP effectively prevents granulomas and enhances surgical success rate.Additionally,there is no statistically significant difference observed between the use of mitomycin C or TABP alone.
文摘Dear Editor,Macular hole(MH)formation is uncommon in patients with diabetic macular edema(DME).Few cases of MH associated with DME treatment have been described,including a report of four out of eight eyes with MH and diabetic retinopathy(DR)having DME[1].However,no case of resolution of MH after DME treatment has been reported.We report three consecutive cases of MH closure achieved by intravitreal injection for DME treatment.
文摘Monolayer barriers called evapotranspiration (ET) covers were developed as alternative final cover systems in waste landfills but high-quality soil remains a limiting factor in these cover systems. Coal bottom ash was evaluated to be a very good alternative to soil in previous tests and a combination of soil (65% wt.wt-1) and coal bottom ash (35% wt.wt-1) was evaluated to be the most feasible materials for ET cover systems. In our pot test, selected manure compost as soil amendment for the composite ET cover system, which was made of soil and bottom ash at ca. 40 Mg.ha-1 application level was very effective to promote vegetation growth of three plants;namely, garden cosmos (Cosmosbipinnatus), Chinese bushclover (Lespedezacuneata), and leafy lespedeza (Lespedeza cyrtobotrya). To evaluate the effect of compost application on plant growth in an ET vegetative cover system, two couples of lysimeters, packed with soil and a mixture of soil and bottom ash, were installed in a pilot landfill cover system in 2007. Manure composts were applied at the rates of 0 and ?40 Mg.ha-11before sowing the five plant species, i.e.indigo-bush (Amorphafruticosa), Japanese mugwort (Artemisia princeps, Arundinella hirta, Lespedezacuneata, and Lespedezacyrtobotrya). Unseeded native plant (green foxtail,Setaria viridis) was dominant in all treatments in the 1st year after installation while the growth of the sown plants significantly improved over the years. Total biomass productivity significantly increased with manure compost application, and more significantly increased in the composite ET cover made of soil and bottom ash treatment compared to the single soil ET cover, mainly due to more improved soil nutrient levels promoting vegetation growth and maintaining the vegetation system. The use of bottom ash as a mixing material in ET cover systems has a strong potential as an alternative to fine-grained soils, and manure compost addition can effectively enhance vegetative propagation in ET cover systems.
基金This work was supported by the Samsung Research Funding&Incubation Center of Samsung Electronics(SRFC-MA1901-10)and the Intramural Research Program of KIST.
文摘Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance.In particular,tumor-associated macrophages(TAMs),as the predominant infiltrated immune cells in a tumor,play a pivotal role in regulating the immunosuppressive tumor microenvironment.As a potential therapeutic strategy to counteract TAMs,here we explore an exosome-guided in situ direct reprogramming of tumor-supportive M2-polarized TAMs into tumor-attacking M1-type macrophages.Exosomes derived from M1-type macrophages(M1-Exo)promote a phenotypic switch from anti-inflammatory M2-like TAMs toward pro-inflammatory M1-type macrophages with high conversion efficiency.Reprogrammed M1 macrophages possessing protein-expression profiles similar to those of classically activated M1 macrophages display significantly increased phagocytic function and robust cross-presentation ability,potentiating antitumor immunity surrounding the tumor.Strikingly,these M1-Exo also lead to the conversion of human patient-derived TAMs into M1-like macrophages that highly express MHC class II,offering the clinical potential of autologous and allogeneic exosome-guided direct TAM reprogramming for arming macrophages to join the fight against cancer.