The traditional orthogonal frequency divi-sion multiplexing(OFDM)transmitter is implemented by inverse fast Fourier transform(IFFT),up-sampling and low pass shaping filter(LPSF),which occupy a large number of hardware...The traditional orthogonal frequency divi-sion multiplexing(OFDM)transmitter is implemented by inverse fast Fourier transform(IFFT),up-sampling and low pass shaping filter(LPSF),which occupy a large number of hardware resources and have long la-tency.To further meet the 5G and future 6G commu-nication requirements,this paper proposes a novel di-rect digital synthesis(DDS)based OFDM transmitter structure that can replace these modules.Due to the strong parallelism of the system structure,it is very suitable for implementation on field programable gate array(FPGA)platform.After making two special sim-plifications to the primary structure,the refined struc-ture becomes very simple compared with the tradi-tional structures.Most attractively,the proposed struc-ture has the following three advantages that i)the data transformation from frequency domain to time domain has zero latency,ii)the transformation length does not need to be an integer power of 2 and iii)the struc-ture does not even need to use any multiplier,thus leading to low implementation complexity and high speed.Comparative experiments are carried out on Intel FPGA platform which show that our DDS based structure can save more than half of the resources com-pared with the traditional structures and can provide the same bit error rate(BER)performance under the condition without using any LPSF.展开更多
Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from stron...Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from strong base station to base station(B2B)interference.In this paper,the authors proposed a design that uses centralized base station(BS)transmit antenna and distributed BS receive antennas,each of which consists of an antennary to perform beamforming that can nullify the B2 B interference.In addition,we proposed a combination algorithm that uses the zero forcing method to cascade the recursive least square(RLS) method for reducing the necessary number of the bits taken to the digital processor.This enables the faster convergence and,thus,allows the transmission of more information bits,compared to the conventional method,for mobile communication.The simulation results confirm this approach for practical application.展开更多
基金the Natural Science Foun-dation of Hubei Province under Grant 2019CFB593National Natural Science Foundation of China un-der Grant 61961016Starting Fund for Doc-toral Research in Hubei Minzu University under Grant MY2018B018.
文摘The traditional orthogonal frequency divi-sion multiplexing(OFDM)transmitter is implemented by inverse fast Fourier transform(IFFT),up-sampling and low pass shaping filter(LPSF),which occupy a large number of hardware resources and have long la-tency.To further meet the 5G and future 6G commu-nication requirements,this paper proposes a novel di-rect digital synthesis(DDS)based OFDM transmitter structure that can replace these modules.Due to the strong parallelism of the system structure,it is very suitable for implementation on field programable gate array(FPGA)platform.After making two special sim-plifications to the primary structure,the refined struc-ture becomes very simple compared with the tradi-tional structures.Most attractively,the proposed struc-ture has the following three advantages that i)the data transformation from frequency domain to time domain has zero latency,ii)the transformation length does not need to be an integer power of 2 and iii)the struc-ture does not even need to use any multiplier,thus leading to low implementation complexity and high speed.Comparative experiments are carried out on Intel FPGA platform which show that our DDS based structure can save more than half of the resources com-pared with the traditional structures and can provide the same bit error rate(BER)performance under the condition without using any LPSF.
基金supported by the National High Technology Research and Development Program of China(Grant No.2014AA01A704)National Natural Science Foundation of China(Grant No.61271203)
文摘Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from strong base station to base station(B2B)interference.In this paper,the authors proposed a design that uses centralized base station(BS)transmit antenna and distributed BS receive antennas,each of which consists of an antennary to perform beamforming that can nullify the B2 B interference.In addition,we proposed a combination algorithm that uses the zero forcing method to cascade the recursive least square(RLS) method for reducing the necessary number of the bits taken to the digital processor.This enables the faster convergence and,thus,allows the transmission of more information bits,compared to the conventional method,for mobile communication.The simulation results confirm this approach for practical application.