Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not r...Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.展开更多
Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise inno...Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.展开更多
基金financially supported by the Ministry of Science and Technology of China (Nos.2013GB23600666 and 2013BAD11B00)funded by the Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization,China+1 种基金supported by the grant of the Australian Research Council (No.LP120200418)Renewed Carbon Pty Ltd.,Australia and the project of DAFF Carbon Farming Futures-Filling the Research Gap,Australia (No.RG134978)
文摘Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.
基金funded by the Linkage,Infrastructure,Equipment and Facilities (LIEF) grant from the Australian Research Council (ARC) (No.LE120100104)supported by the ARC (No.LP120200418),Renewed Carbon Pty Ltd.of Australiathe Department of Agriculture,Australian Government’s Carbon Farming Futures Filling the Research Gap (No.RG134978)
文摘Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.