期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study the Removal of Fluoride from Aqueous Medium by Using Nano-Composites
1
作者 Tapan K. Rout Reeta Verma +1 位作者 Robert V. Dennis sarbajit banerjee 《Journal of Encapsulation and Adsorption Sciences》 2015年第1期38-52,共15页
Endemic fluorosis disease has become a major geo-environmental health care issue caused by fluoride ion. High-efficiency and low-cost materials to uptake fluoride from water have been a chal-lenge for scientists and e... Endemic fluorosis disease has become a major geo-environmental health care issue caused by fluoride ion. High-efficiency and low-cost materials to uptake fluoride from water have been a chal-lenge for scientists and engineers. Here, we report a low-cost process by utilising low-cost starting materials to develop nanocomposite adsorbents for fluoride uptake from water. Bermuda grass as a starting source material converted into nanocomposite carbon fibers upon heat treatment at 800&deg;C for one hour in Nitrogen atmosphere in the presence of metal oxides. Iron oxide-based nanocomposite (IBNC) is performing high (≈97%) removal of fluoride ion at a contact time of 60 minutes (pH 4) followed by titania-based nanocomposite (TBNC) (≈92%) and micro carbon fiber (≈88%) respectively. The phenomenon of fluoride ion uptake is realised by Freundlich adsorption model, and both adsorption capacity and adsorption intensity for IBNC are higher than those for TBNC and micro carbon fiber. 展开更多
关键词 ADSORPTION Nano-Oxides Grafted Carbon Fiber Thermal CVD FLUORIDE
下载PDF
A deep learned nanowire segmentation model using synthetic data augmentation
2
作者 Binbin Lin Nima Emami +3 位作者 David A.Santos Yuting Luo sarbajit banerjee Bai-Xiang Xu 《npj Computational Materials》 SCIE EI CSCD 2022年第1期845-856,共12页
Automated particle segmentation and feature analysis of experimental image data are indispensable for data-driven material science.Deep learning-based image segmentation algorithms are promising techniques to achieve ... Automated particle segmentation and feature analysis of experimental image data are indispensable for data-driven material science.Deep learning-based image segmentation algorithms are promising techniques to achieve this goal but are challenging to use due to the acquisition of a large number of training images.In the present work,synthetic images are applied,resembling the experimental images in terms of geometrical and visual features,to train the state-of-art Mask region-based convolutional neural networks to segment vanadium pentoxide nanowires,a cathode material within optical density-based images acquired using spectromicroscopy.The results demonstrate the instance segmentation power in real optical intensity-based spectromicroscopy images of complex nanowires in overlapped networks and provide reliable statistical information.The model can further be used to segment nanowires in scanning electron microscopy images,which are fundamentally different from the training dataset known to the model.The proposed methodology can be extended to any optical intensity-based images of variable particle morphology,material class,and beyond. 展开更多
关键词 NANOWIRES NETWORKS PARTICLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部