期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An oxygenating colloidal bioink for the engineering of biomimetic tissue constructs 被引量:1
1
作者 seol-ha jeong Jarno Hiemstra +9 位作者 Patrick V.Blokzijl Rebeca Damian-Ferrara Danilo Martins dos Santos Jéssica H.L.da Fonseca Min-Ho Kang Jihyun Kim Dilara Yilmaz-Aykut Mei L.L.Cham-Pérez Jeroen Leijten Su Ryon Shin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期240-261,共22页
Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessita... Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessitates the precise recreation of tissue-specific oxygen levels in imprinted constructs to support the survival of targeted cells.Although oxygen-releasing biomaterials,such as oxygen-generating microparticles(OMPs),have shown promise for enhancing the oxygen supply of microenvironments in injured tissues,whether this approach is scalable for large tissues and whether tissue-specific bioinks with varying OMP concentrations remain printable remain unknown.This study addresses this critical gap by introducing an innovative class of engineered oxygenated bioinks that combine colloidal-based microgels with OMPs.We report that incorporating nanosized calcium peroxide(nCaO_(2))and manganese oxide nanosheets(nMnO_(2))into hydrophobic polymeric microparticles enables precise modulation of oxygen release while controlling hydrogen peroxide release.Moreover,the fabrication of oxygenating and cytocompatible colloidal gels is achieved using an aqueous two-phase system.This study thoroughly evaluates the fundamental characteristics of the resulting bioink,including its rheological behaviors,printability,shape fidelity,mechanical properties,and oxygen release properties.Moreover,this study demonstrates the macroscopic scalability and cytocompatibility of printed constructs produced via cell-laden oxygenating colloidal bioinks.By showcasing the effectiveness of extrusion-based bioprinting,this study underscores how it can be used to fabricate biomimetic tissues,indicating its potential for new applications.The findings presented here advance the bioprinting field by achieving scalability with both high cell viability and the possibility of mimicking specifically oxygenated tissues.This work thereby offers a promising avenue for the development of functional tissues with enhanced physiological relevance. 展开更多
关键词 3D bioprinting Bioink Colloidal gels Extrusion printing Oxygen-generating microparticle
下载PDF
A combination strategy of functionalized polymer coating with Ta ion implantation for multifunctional and biodegradable vascular stents
2
作者 Kwang-Hee Cheon Cheonil Park +6 位作者 Min-Ho Kang Suhyung Park Jinyoung Kim seol-ha jeong Hyoun-Ee Kim Hyun-Do Jung Tae-Sik Jang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2195-2207,共13页
Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion be... Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion behavior under physiological conditions leads to poor vascular compatibility and premature structural failure,which remains an important unsolved clinical problem.Herein,we demonstrate a new strategy for solving this problem by combining poly(ether imide)(PEI)coating and subsequent tantalum(Ta)ion implantation.The PEI coating covers the whole surface of the Mg stent uniformly via a spray coating technique and provides Mg with superior corrosion resistance and stable sirolimus-carrying ability.Ta ion implantation is conducted by a sputtering-based plasma immersion ion implantation technique only onto the luminal surface of the PEI-coated Mg stent.Its extremely short processing time(<30 s)permits preservation of the PEI coating’s corrosion protection ability and sirolimus loading characteristics.In addition,a Ta-implanted skin layer that forms on the topmost surface of the PEI coating plays an effective role in not only preventing a rapid release of sirolimus from the surface but also improving the PEI coating’s surface hydrophilicity.Based on in vitro cellular response and blood compatibility tests,Ta ion implantation leads to the improvement of endothelial cell adhesion/proliferation and suppression of platelet adhesion/activation regardless of sirolimus loading.These results indicate that the combination of PEI coating and Ta ion implantation has significant innovative potential to provide excellent vascular compatibility and prevent in-stent restenosis and thrombosis. 展开更多
关键词 Magnesium stent BIODEGRADABILITY TANTALUM Plasma immersion ion implantation Multifunctionality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部