Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessita...Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessitates the precise recreation of tissue-specific oxygen levels in imprinted constructs to support the survival of targeted cells.Although oxygen-releasing biomaterials,such as oxygen-generating microparticles(OMPs),have shown promise for enhancing the oxygen supply of microenvironments in injured tissues,whether this approach is scalable for large tissues and whether tissue-specific bioinks with varying OMP concentrations remain printable remain unknown.This study addresses this critical gap by introducing an innovative class of engineered oxygenated bioinks that combine colloidal-based microgels with OMPs.We report that incorporating nanosized calcium peroxide(nCaO_(2))and manganese oxide nanosheets(nMnO_(2))into hydrophobic polymeric microparticles enables precise modulation of oxygen release while controlling hydrogen peroxide release.Moreover,the fabrication of oxygenating and cytocompatible colloidal gels is achieved using an aqueous two-phase system.This study thoroughly evaluates the fundamental characteristics of the resulting bioink,including its rheological behaviors,printability,shape fidelity,mechanical properties,and oxygen release properties.Moreover,this study demonstrates the macroscopic scalability and cytocompatibility of printed constructs produced via cell-laden oxygenating colloidal bioinks.By showcasing the effectiveness of extrusion-based bioprinting,this study underscores how it can be used to fabricate biomimetic tissues,indicating its potential for new applications.The findings presented here advance the bioprinting field by achieving scalability with both high cell viability and the possibility of mimicking specifically oxygenated tissues.This work thereby offers a promising avenue for the development of functional tissues with enhanced physiological relevance.展开更多
Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion be...Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion behavior under physiological conditions leads to poor vascular compatibility and premature structural failure,which remains an important unsolved clinical problem.Herein,we demonstrate a new strategy for solving this problem by combining poly(ether imide)(PEI)coating and subsequent tantalum(Ta)ion implantation.The PEI coating covers the whole surface of the Mg stent uniformly via a spray coating technique and provides Mg with superior corrosion resistance and stable sirolimus-carrying ability.Ta ion implantation is conducted by a sputtering-based plasma immersion ion implantation technique only onto the luminal surface of the PEI-coated Mg stent.Its extremely short processing time(<30 s)permits preservation of the PEI coating’s corrosion protection ability and sirolimus loading characteristics.In addition,a Ta-implanted skin layer that forms on the topmost surface of the PEI coating plays an effective role in not only preventing a rapid release of sirolimus from the surface but also improving the PEI coating’s surface hydrophilicity.Based on in vitro cellular response and blood compatibility tests,Ta ion implantation leads to the improvement of endothelial cell adhesion/proliferation and suppression of platelet adhesion/activation regardless of sirolimus loading.These results indicate that the combination of PEI coating and Ta ion implantation has significant innovative potential to provide excellent vascular compatibility and prevent in-stent restenosis and thrombosis.展开更多
基金funded by the National Insti-tutes of Health(No.R01 AR074234)AHA collaborative award(No.944227)the Gillian Reny Stepping Strong Center for Trauma Inno-vation at Brigham and Women's Hospital.
文摘Ensuring a sufficient oxygen supply is pivotal for the success of bioprinting applications since it fosters tissue integration and natural regeneration.Variation in oxygen concentration among diverse tissues necessitates the precise recreation of tissue-specific oxygen levels in imprinted constructs to support the survival of targeted cells.Although oxygen-releasing biomaterials,such as oxygen-generating microparticles(OMPs),have shown promise for enhancing the oxygen supply of microenvironments in injured tissues,whether this approach is scalable for large tissues and whether tissue-specific bioinks with varying OMP concentrations remain printable remain unknown.This study addresses this critical gap by introducing an innovative class of engineered oxygenated bioinks that combine colloidal-based microgels with OMPs.We report that incorporating nanosized calcium peroxide(nCaO_(2))and manganese oxide nanosheets(nMnO_(2))into hydrophobic polymeric microparticles enables precise modulation of oxygen release while controlling hydrogen peroxide release.Moreover,the fabrication of oxygenating and cytocompatible colloidal gels is achieved using an aqueous two-phase system.This study thoroughly evaluates the fundamental characteristics of the resulting bioink,including its rheological behaviors,printability,shape fidelity,mechanical properties,and oxygen release properties.Moreover,this study demonstrates the macroscopic scalability and cytocompatibility of printed constructs produced via cell-laden oxygenating colloidal bioinks.By showcasing the effectiveness of extrusion-based bioprinting,this study underscores how it can be used to fabricate biomimetic tissues,indicating its potential for new applications.The findings presented here advance the bioprinting field by achieving scalability with both high cell viability and the possibility of mimicking specifically oxygenated tissues.This work thereby offers a promising avenue for the development of functional tissues with enhanced physiological relevance.
基金supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant No:HI18C0493)
文摘Biodegradable stents made of magnesium(Mg)and its alloys have been developed to minimize persistent inflammation or in-stent restenosis,which are the main problems for permanent stents.However,their rapid corrosion behavior under physiological conditions leads to poor vascular compatibility and premature structural failure,which remains an important unsolved clinical problem.Herein,we demonstrate a new strategy for solving this problem by combining poly(ether imide)(PEI)coating and subsequent tantalum(Ta)ion implantation.The PEI coating covers the whole surface of the Mg stent uniformly via a spray coating technique and provides Mg with superior corrosion resistance and stable sirolimus-carrying ability.Ta ion implantation is conducted by a sputtering-based plasma immersion ion implantation technique only onto the luminal surface of the PEI-coated Mg stent.Its extremely short processing time(<30 s)permits preservation of the PEI coating’s corrosion protection ability and sirolimus loading characteristics.In addition,a Ta-implanted skin layer that forms on the topmost surface of the PEI coating plays an effective role in not only preventing a rapid release of sirolimus from the surface but also improving the PEI coating’s surface hydrophilicity.Based on in vitro cellular response and blood compatibility tests,Ta ion implantation leads to the improvement of endothelial cell adhesion/proliferation and suppression of platelet adhesion/activation regardless of sirolimus loading.These results indicate that the combination of PEI coating and Ta ion implantation has significant innovative potential to provide excellent vascular compatibility and prevent in-stent restenosis and thrombosis.