With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,wel...With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices.展开更多
Transistor size is constantly being reduced to improve performance as well as power consumption. For the channel length to be reduced, the corresponding gate dielectric thickness should also be reduced. Unfortunately,...Transistor size is constantly being reduced to improve performance as well as power consumption. For the channel length to be reduced, the corresponding gate dielectric thickness should also be reduced. Unfortunately, graphene devices are more complicated due to an extra capacitance called quantum capacitance (CQ) which limits the effective gate dielectric reduction. In this work, we analyzed the effect of CQ on device-scaling issues by extracting it from scaling of the channel length of devices. In contrast to previous reports for metal-insulator- metal structures, a practical device structure was used in conjunction with direct radio-frequency field-effect transistor measurements to describe the graphene channels. In order to precisely extract device parameters, we reassessed the equivalent circuit, and concluded that the on-state model should in fact be used. By careful consideration of the underlap region, our device modeling was shown to be in good agreement with the experimental data. CQ contributions to equivalent oxide thickness were analyzed in detail for varying impurity concentrations in graphene. Finally, we were able to demonstrate that despite contributions from CQ, graphene's high mobility and low-voltage operation allows for ~raphene channels suitable for next generation transistors.展开更多
Using scanning tunneling microscopy/spectroscopy(STM/STS),we examine quasiparticle scattering and interference properties at the surface of WTe2.WTe2,layered transition metal dichalcogenide,is predicted to be a type-l...Using scanning tunneling microscopy/spectroscopy(STM/STS),we examine quasiparticle scattering and interference properties at the surface of WTe2.WTe2,layered transition metal dichalcogenide,is predicted to be a type-ll Weyl semimetal.The Weyl fermion states in WTe2 emerge as topologically protected touching points of electron and hole pockets,and Fermi arcs connecting them can be visible in the spectral function on the surface.To probe the properties of surface states,we have conducted low-temperature STM/STS(at 2.7 K)on the surfaces of WTe2 single crystals.We visualize the surface states of WTe2 with atomic scale resolution.Clear surface states emerging from the bulk electron pocket have been identified and their connection with the bulk electronic states shows good agreement with calculations.We show the interesting double resonance peaks in the local density of states appearing at localized impurities.The low-energy resonant peak occurs near the Weyl point above the Fermi energy and it may be mixed with the surface state of Weyl points,which makes it difficult to observe the topological nature of the Weyl semimetal WTe2.展开更多
基金supported by National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2021M3F3A2A01037365,RS-2023-00207970)KAINEET Institute Seed Money Project,Post-AI Research Institute.
文摘With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices.
文摘Transistor size is constantly being reduced to improve performance as well as power consumption. For the channel length to be reduced, the corresponding gate dielectric thickness should also be reduced. Unfortunately, graphene devices are more complicated due to an extra capacitance called quantum capacitance (CQ) which limits the effective gate dielectric reduction. In this work, we analyzed the effect of CQ on device-scaling issues by extracting it from scaling of the channel length of devices. In contrast to previous reports for metal-insulator- metal structures, a practical device structure was used in conjunction with direct radio-frequency field-effect transistor measurements to describe the graphene channels. In order to precisely extract device parameters, we reassessed the equivalent circuit, and concluded that the on-state model should in fact be used. By careful consideration of the underlap region, our device modeling was shown to be in good agreement with the experimental data. CQ contributions to equivalent oxide thickness were analyzed in detail for varying impurity concentrations in graphene. Finally, we were able to demonstrate that despite contributions from CQ, graphene's high mobility and low-voltage operation allows for ~raphene channels suitable for next generation transistors.
基金We thank K.Lee and J.Heo for useful discussions and other colleagues at the Samsung Advanced Institute of Technology(SAIT)This work has been supported by the Global Research Laboratory Program(No.2016K1A1A2912707)+5 种基金Quantum Computing Development Program(No.2019M3E4A 1080227)the Basic Science Research Program(No.2015M3A7B4050455)the SRC Center for Topological Matter(No.2018R1A5A6075964)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT(MSIT)in KoreaThis work has been supported by Indutrial Strategic Technology Development Program(No.10085617)funded by the Ministry of Trade Industry&Energy(MOTIE)in KoreaThis work has been supported by Institute for Basic Science(No.IBS-R011-D1)Supercomputing resources including technical service were supported by National Institute of Supercomputing and Network through Korea Institute of Science and Technology Information(No.KSC 2018-51-0008).
文摘Using scanning tunneling microscopy/spectroscopy(STM/STS),we examine quasiparticle scattering and interference properties at the surface of WTe2.WTe2,layered transition metal dichalcogenide,is predicted to be a type-ll Weyl semimetal.The Weyl fermion states in WTe2 emerge as topologically protected touching points of electron and hole pockets,and Fermi arcs connecting them can be visible in the spectral function on the surface.To probe the properties of surface states,we have conducted low-temperature STM/STS(at 2.7 K)on the surfaces of WTe2 single crystals.We visualize the surface states of WTe2 with atomic scale resolution.Clear surface states emerging from the bulk electron pocket have been identified and their connection with the bulk electronic states shows good agreement with calculations.We show the interesting double resonance peaks in the local density of states appearing at localized impurities.The low-energy resonant peak occurs near the Weyl point above the Fermi energy and it may be mixed with the surface state of Weyl points,which makes it difficult to observe the topological nature of the Weyl semimetal WTe2.