期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermally Drawn Multi‑material Fibers Based on Polymer Nanocomposite for Continuous Temperature Sensing 被引量:1
1
作者 Woo Mi Ryu Yunheum Lee +2 位作者 Yeonzu Son Geonho park seongjun park 《Advanced Fiber Materials》 SCIE EI CAS 2023年第5期1712-1724,共13页
With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,wel... With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices. 展开更多
关键词 Fiber temperature sensor Wearable device Thermal drawing process Multi-material thermal drawing conductive polymer composite
原文传递
Is quantum capacitance in graphene a potential hurdle for device scaling?
2
作者 Jaeho Lee Hyun-Jong Chung +6 位作者 David H. Seo Jaehong Lee Hyungcheol Shin Sunae Seo seongjun park Sungwoo Hwang Kinam Kim 《Nano Research》 SCIE EI CAS CSCD 2014年第4期453-461,共9页
Transistor size is constantly being reduced to improve performance as well as power consumption. For the channel length to be reduced, the corresponding gate dielectric thickness should also be reduced. Unfortunately,... Transistor size is constantly being reduced to improve performance as well as power consumption. For the channel length to be reduced, the corresponding gate dielectric thickness should also be reduced. Unfortunately, graphene devices are more complicated due to an extra capacitance called quantum capacitance (CQ) which limits the effective gate dielectric reduction. In this work, we analyzed the effect of CQ on device-scaling issues by extracting it from scaling of the channel length of devices. In contrast to previous reports for metal-insulator- metal structures, a practical device structure was used in conjunction with direct radio-frequency field-effect transistor measurements to describe the graphene channels. In order to precisely extract device parameters, we reassessed the equivalent circuit, and concluded that the on-state model should in fact be used. By careful consideration of the underlap region, our device modeling was shown to be in good agreement with the experimental data. CQ contributions to equivalent oxide thickness were analyzed in detail for varying impurity concentrations in graphene. Finally, we were able to demonstrate that despite contributions from CQ, graphene's high mobility and low-voltage operation allows for ~raphene channels suitable for next generation transistors. 展开更多
关键词 GRAPHENE equivalent circuit quantum capacitance intrinsic delay
原文传递
Quasiparticle interference and impurity resonances on WTe2
3
作者 Hyeokshin Kwon Taehwan Jeong +7 位作者 Samudrala Appalakondaiah Youngtek Oh Insu Jeon Hongki Min seongjun park Young Jae Song Euyheon Hwang Sungwoo Hwang 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2534-2540,共7页
Using scanning tunneling microscopy/spectroscopy(STM/STS),we examine quasiparticle scattering and interference properties at the surface of WTe2.WTe2,layered transition metal dichalcogenide,is predicted to be a type-l... Using scanning tunneling microscopy/spectroscopy(STM/STS),we examine quasiparticle scattering and interference properties at the surface of WTe2.WTe2,layered transition metal dichalcogenide,is predicted to be a type-ll Weyl semimetal.The Weyl fermion states in WTe2 emerge as topologically protected touching points of electron and hole pockets,and Fermi arcs connecting them can be visible in the spectral function on the surface.To probe the properties of surface states,we have conducted low-temperature STM/STS(at 2.7 K)on the surfaces of WTe2 single crystals.We visualize the surface states of WTe2 with atomic scale resolution.Clear surface states emerging from the bulk electron pocket have been identified and their connection with the bulk electronic states shows good agreement with calculations.We show the interesting double resonance peaks in the local density of states appearing at localized impurities.The low-energy resonant peak occurs near the Weyl point above the Fermi energy and it may be mixed with the surface state of Weyl points,which makes it difficult to observe the topological nature of the Weyl semimetal WTe2. 展开更多
关键词 WTe2 Weyl semimetal quasi-particle interference scanning tunneling microscopy/spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部