期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data
1
作者 Uddagiri Sirisha Parvathaneni Naga Srinivasu +4 位作者 Panguluri Padmavathi seongki kim Aruna Pavate Jana Shafi Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2301-2330,共30页
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn... Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process. 展开更多
关键词 Fetal health cardiotocography data deep learning dynamic multi-layer perceptron feature engineering
下载PDF
Efficient Route Planning for Real-Time Demand-Responsive Transit
2
作者 Hongle Li seongki kim 《Computers, Materials & Continua》 SCIE EI 2024年第4期473-492,共20页
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d... Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility. 展开更多
关键词 Autonomous bus route planning real-time dynamic route planning path finding DRT bus route optimization sustainable public transport
下载PDF
Fortifying Healthcare Data Security in the Cloud:A Comprehensive Examination of the EPM-KEA Encryption Protocol
3
作者 Umi Salma Basha Shashi Kant Gupta +2 位作者 Wedad Alawad seongki kim Salil Bharany 《Computers, Materials & Continua》 SCIE EI 2024年第5期3397-3416,共20页
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil... A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data. 展开更多
关键词 Cloud computing healthcare data security enhanced parallel multi-key encryption algorithm(EPM-KEA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部