Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and th...Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and theoret-ical analysis.Micro-Raman analysis reveals that the Nd∶GdCOB crystal lattice expands during the irradiation process.Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd∶GdCOB crystal are greatly enhanced within the waveguide volume.Under pulsed 1064 nm laser pumping,second harmonic generation(SHG)at 532 nm has been achieved in the fabricated waveguides.The maximum SHG conversion efficiencies are determined to be~8.32%·W^(-1) and~22.36%·W^(-1) for planar and ridge waveguides,respectively.展开更多
基金Project supported by the Taishan Scholars Youth Expert Program of Shandong Provincethe Qilu Young Scholar Program of Shandong University, China
文摘Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd∶GdCOB ridge waveguides.The propagation properties of the fabricated Nd∶GdCOB waveguides are investigated through experiments and theoret-ical analysis.Micro-Raman analysis reveals that the Nd∶GdCOB crystal lattice expands during the irradiation process.Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd∶GdCOB crystal are greatly enhanced within the waveguide volume.Under pulsed 1064 nm laser pumping,second harmonic generation(SHG)at 532 nm has been achieved in the fabricated waveguides.The maximum SHG conversion efficiencies are determined to be~8.32%·W^(-1) and~22.36%·W^(-1) for planar and ridge waveguides,respectively.