This article studies the soil moisture conditions of 30 years artificial Robinia pseudoacacia in the north of Shaanxi under different climate conditions in order to explore the relationship between soil moisture and i...This article studies the soil moisture conditions of 30 years artificial Robinia pseudoacacia in the north of Shaanxi under different climate conditions in order to explore the relationship between soil moisture and impact factor of Robinia pseudoacacia in this area,and variation characteristics of soil moisture in the Loess Plateau region. The results show that soil moisture content decreases with increase of soil depth, and in 40- 50 cm depth the jump point of moisture reduction appears significantly. Soil moisture was lower than the growth critical moisture in 5 samples to the north of Chunhua,and has different degrees of deficit. Soil moisture deficit degree was more than 50% in sandy loam and light loam soils such as Yulin,Shenmu and Suide. With the increasing of latitude,both of soil accumulative storage and net rainfall tends to decrease,but the relationship between them is significant correlation,indicating that that climate conditions are the major factors causing significant difference of soil moisture.展开更多
Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical...Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical, chemical and biological properties. However, limited information is available on the fractal characteristics of deep soil layers under different land use patterns. In this study, the fractal dimensions of particle size distribution(PSD) and micro-aggregates in the 0–500 cm soil profile and soil anti-erodibility in the 0–10 cm soil profile for 10 typical land use patterns were investigated in the Zhifanggou Watershed on the Loess Plateau, China. The 10 typical land use patterns were: slope cropland, two terraced croplands, check-dam cropland, woodland, two shrublands, orchard, artificial and natural grasslands. The results showed that the fractal dimensions of PSD and micro-aggregates were all significantly influenced by soil depths, land use patterns and their interaction. The plantations of shrubland, woodland and natural grassland increased the amount of larger micro-aggregates, and decreased the fractal dimensions of micro-aggregates in the 0–40 cm soil profile. And they also improved the aggregate state and aggregate degree and decreased dispersion rate in the 0–10 cm soil profile. The results indicated that fractal theory can be used to characterize soil structure under different land use patterns and fractal dimensions of micro-aggregates were more effective in this regard. The natural grassland may be the best choice for improving soil structure in the study area.展开更多
Secondary succession is the process by which a community develops into a climax community over time.However,knowledge on the mechanisms,relating to soil legacy effects(soil chemistry and enzyme activity)and plant-soil...Secondary succession is the process by which a community develops into a climax community over time.However,knowledge on the mechanisms,relating to soil legacy effects(soil chemistry and enzyme activity)and plant-soil feedback(PSF),driving community succession remains limited.In this work,we examined the PSF associated with three succession stage species through a 2-year greenhouse experiment.Setaria viridis,Stipa bungeana,and Bothriochloa ischemum were selected to represent dominant and representative early-,mid-,and late-successional stage species,respectively,of semiarid grasslands on the Loess Plateau.In response to the different soil origin,the shoot biomass of early-,mid-,and late-species were all higher when grown in their own soil than in other species’soils,which indicated that the PSF of three species were positive.Over two growth periods,the early-species experienced a negative PSF,but the mid-and late-species experienced negative,neutral and positive PSF in the soil of early-,mid-and late-species,respectively.Our study demonstrates that soil legacy effects and PSF have a significant impact on community succession processes.展开更多
Exotic species invasion represent important causes of harming the structure,function,and ecological environment in ecosystems.Yet,knowledge remains limited on the invasibility(invasion advantage of exotic species)and ...Exotic species invasion represent important causes of harming the structure,function,and ecological environment in ecosystems.Yet,knowledge remains limited on the invasibility(invasion advantage of exotic species)and recoverability(recovery ability of native species)of a plant community following invasion depend on its successional stages.We selected three grasses of Setaria viridis,Artemisia gmelinii,and Bothriochloa ischemum representing early(E),middle(M),and late(L)successional species,respectively.Meanwhile,the grasses of Panicum virgatum was selected to represent exotic species(invasion species).Three types of soil were collected to treat the three E,M,and L successional species,and one type of soil was collected to treat the exotic species.We compared the performance of the three native plant species and one exotic species grown in their“own”and“other”soils in a 2-year greenhouse experiment.Our study showed that exotic species performed better in soils of E and M successional species than in the soil of L successional species.After exotic species removed,E and M successional species exhibited poor growth in the soil of exotic species,while that of L successional species performed poor in field exotic species soils,but performed better in soils disturbed by exotic species.Our study demonstrated that the invasibility and recoverability of native plant communities changed with vegetation succession.展开更多
Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important compo...Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important component of terrestrial ecosystems and play a key role in maintaining terrestrial ecosystem balance.Therefore,it is critical to understand the effects of nitrogen addition on grassland ecosystems.We conducted gradientN addition experiments(0,3,6,and 9 g N m^(-2)2 y^(-1))for threeyears ingrassland communities with similar site conditions.We utilized four typical herbaceous plants,including the dominant species Bothriochloa ischemum(B.ischemum)and companion species Stipa bungeana(S.bungeana),Artemisia gmelinii(A.gmelinii),and Cleistogenes squarrosa(C.squarrosa),to explore how different plant-soil-microbe systems respond to N addition.Stoichiometric homeostasis analysis demonstrated that both plants and microbes were strictly homeostatic.However,the companion species were found to be more susceptible to P dominant species.Furthermore,aggravated overlap in stoichiometric niches between plant species were observed at the N6 and N9 levels.Vector analysis indicated that the vector angle was>45°regardlessof plant species and N levels,suggesting that there was a strong Plimitation in the rhizosphere microbial community.Variation partitioning analysis revealed that the Composite roots exhibited a greater effect(explaining 34.7% of the variation)on the rhizosphere microbes than on the Gramineae,indicating that there may be more intense nutrient competition in its rhizosphere.Ingeneral,the effects of N addition on species were different a cross functional groups,with a significant positive effect on the Gramineae(B.ischemum,S.bungeana,and C.squarrosa)and a significant negative effecton the Compositae(A.gmelinii),which should be fully considered in the future ecological management and restoration.展开更多
Microbes play an important role in the carbon cycle and nutrient flow of the soil ecosystem.However,the response of microbial activities to long-term warming over decades is poorly understood.To determine how warming ...Microbes play an important role in the carbon cycle and nutrient flow of the soil ecosystem.However,the response of microbial activities to long-term warming over decades is poorly understood.To determine how warming changes ecoenzyme activity and microbial nutrient limitation,we conducted a long-term,21 years,experiment,on the Qinghai–Tibet Plateau.We selected typical grass-and shrub-covered plots,used fiberglass open-top chambers(OTCs)to raise the temperature,conducted soil sampling at different depths,studied the response of nutrient-acquiring enzyme activity and stoichiometry,and conducted vector analysis of stoichiometry.Our results showed that long-term warming did not have a notable effect on the activity of nutrient-acquiring enzymes or enzymatic stoichiometry.However,Spearman correlation analysis indicated a significant and positive correlation between ecoenzyme activity and the available nutrients and microbial biomass in soil.Vector analysis of stoichiometry showed phosphorus limitation for all soil microbes at different depths,regardless of whether the soil experienced warming.These changes in enzymatic stoichiometry and vector analysis suggested that microbial nutrient limitation was not alleviated substantially by long-term warming,and warming did not considerably affect the stratification of microbial nutrient limitation.Our research has also shown that long-term warming does not significantly change soil ecoenzyme activity and original microbial nutrient limitation at different soil depths within the OTUsʼimpact range.These results could help improve understanding of microbial thermal acclimation and response to future long-term global warming.展开更多
文摘This article studies the soil moisture conditions of 30 years artificial Robinia pseudoacacia in the north of Shaanxi under different climate conditions in order to explore the relationship between soil moisture and impact factor of Robinia pseudoacacia in this area,and variation characteristics of soil moisture in the Loess Plateau region. The results show that soil moisture content decreases with increase of soil depth, and in 40- 50 cm depth the jump point of moisture reduction appears significantly. Soil moisture was lower than the growth critical moisture in 5 samples to the north of Chunhua,and has different degrees of deficit. Soil moisture deficit degree was more than 50% in sandy loam and light loam soils such as Yulin,Shenmu and Suide. With the increasing of latitude,both of soil accumulative storage and net rainfall tends to decrease,but the relationship between them is significant correlation,indicating that that climate conditions are the major factors causing significant difference of soil moisture.
基金supported by the Strategic Technology Project of Chinese Academy of Sciences (XDA05060300)the Science and Technology R&D Program of Shaanxi Province (2011KJXX63)
文摘Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical, chemical and biological properties. However, limited information is available on the fractal characteristics of deep soil layers under different land use patterns. In this study, the fractal dimensions of particle size distribution(PSD) and micro-aggregates in the 0–500 cm soil profile and soil anti-erodibility in the 0–10 cm soil profile for 10 typical land use patterns were investigated in the Zhifanggou Watershed on the Loess Plateau, China. The 10 typical land use patterns were: slope cropland, two terraced croplands, check-dam cropland, woodland, two shrublands, orchard, artificial and natural grasslands. The results showed that the fractal dimensions of PSD and micro-aggregates were all significantly influenced by soil depths, land use patterns and their interaction. The plantations of shrubland, woodland and natural grassland increased the amount of larger micro-aggregates, and decreased the fractal dimensions of micro-aggregates in the 0–40 cm soil profile. And they also improved the aggregate state and aggregate degree and decreased dispersion rate in the 0–10 cm soil profile. The results indicated that fractal theory can be used to characterize soil structure under different land use patterns and fractal dimensions of micro-aggregates were more effective in this regard. The natural grassland may be the best choice for improving soil structure in the study area.
基金funded by the National Natural Science Foundation of China(42130717)the Shaanxi Science Fund for Distinguished Young Scholars(2021JC-50)。
文摘Secondary succession is the process by which a community develops into a climax community over time.However,knowledge on the mechanisms,relating to soil legacy effects(soil chemistry and enzyme activity)and plant-soil feedback(PSF),driving community succession remains limited.In this work,we examined the PSF associated with three succession stage species through a 2-year greenhouse experiment.Setaria viridis,Stipa bungeana,and Bothriochloa ischemum were selected to represent dominant and representative early-,mid-,and late-successional stage species,respectively,of semiarid grasslands on the Loess Plateau.In response to the different soil origin,the shoot biomass of early-,mid-,and late-species were all higher when grown in their own soil than in other species’soils,which indicated that the PSF of three species were positive.Over two growth periods,the early-species experienced a negative PSF,but the mid-and late-species experienced negative,neutral and positive PSF in the soil of early-,mid-and late-species,respectively.Our study demonstrates that soil legacy effects and PSF have a significant impact on community succession processes.
基金This research were funded by the National Natural Science Foundation of China(41907409 and 41771557)Special Scientific Research Project of Education Department of Shaanxi Provincial Government(19JK0524).
文摘Exotic species invasion represent important causes of harming the structure,function,and ecological environment in ecosystems.Yet,knowledge remains limited on the invasibility(invasion advantage of exotic species)and recoverability(recovery ability of native species)of a plant community following invasion depend on its successional stages.We selected three grasses of Setaria viridis,Artemisia gmelinii,and Bothriochloa ischemum representing early(E),middle(M),and late(L)successional species,respectively.Meanwhile,the grasses of Panicum virgatum was selected to represent exotic species(invasion species).Three types of soil were collected to treat the three E,M,and L successional species,and one type of soil was collected to treat the exotic species.We compared the performance of the three native plant species and one exotic species grown in their“own”and“other”soils in a 2-year greenhouse experiment.Our study showed that exotic species performed better in soils of E and M successional species than in the soil of L successional species.After exotic species removed,E and M successional species exhibited poor growth in the soil of exotic species,while that of L successional species performed poor in field exotic species soils,but performed better in soils disturbed by exotic species.Our study demonstrated that the invasibility and recoverability of native plant communities changed with vegetation succession.
基金This work was financially supported by Shaanxi Science Fund for Distinguished Young Scholars(2021JC-50)the National Natural Science Foundation of China(41771557)Fundamental Research Funds for the Central Universities(2452021165)。
文摘Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important component of terrestrial ecosystems and play a key role in maintaining terrestrial ecosystem balance.Therefore,it is critical to understand the effects of nitrogen addition on grassland ecosystems.We conducted gradientN addition experiments(0,3,6,and 9 g N m^(-2)2 y^(-1))for threeyears ingrassland communities with similar site conditions.We utilized four typical herbaceous plants,including the dominant species Bothriochloa ischemum(B.ischemum)and companion species Stipa bungeana(S.bungeana),Artemisia gmelinii(A.gmelinii),and Cleistogenes squarrosa(C.squarrosa),to explore how different plant-soil-microbe systems respond to N addition.Stoichiometric homeostasis analysis demonstrated that both plants and microbes were strictly homeostatic.However,the companion species were found to be more susceptible to P dominant species.Furthermore,aggravated overlap in stoichiometric niches between plant species were observed at the N6 and N9 levels.Vector analysis indicated that the vector angle was>45°regardlessof plant species and N levels,suggesting that there was a strong Plimitation in the rhizosphere microbial community.Variation partitioning analysis revealed that the Composite roots exhibited a greater effect(explaining 34.7% of the variation)on the rhizosphere microbes than on the Gramineae,indicating that there may be more intense nutrient competition in its rhizosphere.Ingeneral,the effects of N addition on species were different a cross functional groups,with a significant positive effect on the Gramineae(B.ischemum,S.bungeana,and C.squarrosa)and a significant negative effecton the Compositae(A.gmelinii),which should be fully considered in the future ecological management and restoration.
基金This work was supported financially by the National Natural Science Foundation of China(31672475)Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions,North-west Institute of Plateau Biology(2020-KF-04)Qinghai Innovation Platform Construction Project(2021-ZJ-Y010).
文摘Microbes play an important role in the carbon cycle and nutrient flow of the soil ecosystem.However,the response of microbial activities to long-term warming over decades is poorly understood.To determine how warming changes ecoenzyme activity and microbial nutrient limitation,we conducted a long-term,21 years,experiment,on the Qinghai–Tibet Plateau.We selected typical grass-and shrub-covered plots,used fiberglass open-top chambers(OTCs)to raise the temperature,conducted soil sampling at different depths,studied the response of nutrient-acquiring enzyme activity and stoichiometry,and conducted vector analysis of stoichiometry.Our results showed that long-term warming did not have a notable effect on the activity of nutrient-acquiring enzymes or enzymatic stoichiometry.However,Spearman correlation analysis indicated a significant and positive correlation between ecoenzyme activity and the available nutrients and microbial biomass in soil.Vector analysis of stoichiometry showed phosphorus limitation for all soil microbes at different depths,regardless of whether the soil experienced warming.These changes in enzymatic stoichiometry and vector analysis suggested that microbial nutrient limitation was not alleviated substantially by long-term warming,and warming did not considerably affect the stratification of microbial nutrient limitation.Our research has also shown that long-term warming does not significantly change soil ecoenzyme activity and original microbial nutrient limitation at different soil depths within the OTUsʼimpact range.These results could help improve understanding of microbial thermal acclimation and response to future long-term global warming.