Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate th...Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.展开更多
This work aims to research the effects on the early responses of the air-backed plate subjected to the loading generated by the underwater explosion with aluminized explosives.The loading characteristics of underwater...This work aims to research the effects on the early responses of the air-backed plate subjected to the loading generated by the underwater explosion with aluminized explosives.The loading characteristics of underwater explosion for ideal explosive(TNT),aluminized explosives(RS211 and RBUL) are obtained experimentally.The tested aluminized explosives have different energy output compared with TNT.Based on the Taylor plate theory,the early responses of the air-backed steel plate affected by the measured loading is analyzed.The analytical results indicate that the pressure curve of the shock wave within 1 time decay constant is the main factor affecting the kick-off velocity of the plate when cavitation occurring.The velocity responses of the plate produced by the loading of RS211 and RBUL are obviously different with that of an equivalent TNT charge,which also indicates validity and suitability should be noticed in the case of substituting TNT for aluminized explosives.Moreover,the uncertainties in the responses of the plate produced by RS211 and RBUL are much larger than TNT.展开更多
基金the project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology).The project number is NO.QNKT19-04.
文摘Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.
基金This paper is supported by the project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology).The project number is NO.QNKT19-04.
文摘This work aims to research the effects on the early responses of the air-backed plate subjected to the loading generated by the underwater explosion with aluminized explosives.The loading characteristics of underwater explosion for ideal explosive(TNT),aluminized explosives(RS211 and RBUL) are obtained experimentally.The tested aluminized explosives have different energy output compared with TNT.Based on the Taylor plate theory,the early responses of the air-backed steel plate affected by the measured loading is analyzed.The analytical results indicate that the pressure curve of the shock wave within 1 time decay constant is the main factor affecting the kick-off velocity of the plate when cavitation occurring.The velocity responses of the plate produced by the loading of RS211 and RBUL are obviously different with that of an equivalent TNT charge,which also indicates validity and suitability should be noticed in the case of substituting TNT for aluminized explosives.Moreover,the uncertainties in the responses of the plate produced by RS211 and RBUL are much larger than TNT.