Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity.Phenoloxidases(catechol oxidases,COs,and laccases,LACs)are responsible for the oxidation and polymerization of phenoli...Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity.Phenoloxidases(catechol oxidases,COs,and laccases,LACs)are responsible for the oxidation and polymerization of phenolics.However,their origin,evolution,and differential roles during plant development and land colonization are unclear.We performed the phylogeny,domain,amino acids,compositional biases,and intron analyses to clarify the origin and evolution of COs and LACs,and analysed the structure,selective pressure,and chloroplast targeting to understand the species-dependent distribution of COs.We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases(TYRs),and might have been acquired by horizontal gene transfer from bacteria.COs expanded in bryophytes.Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes.LACs emerged in Zygnemaphyceae,having evolved from ascorbate oxidases(AAOs),and prevailed in the vascular plants and strongly expanded in seed plants.COs and LACs coevolved with the phenolic metabolism pathway genes.These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta.COs might be the second key for the early land colonization.LACs were the third one(dominating in the vascular plants)and might be advantageous for diversified phenol substrates and the erect growth of plants.This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.展开更多
Phosphorus(P)is a critical nutrient that plays an essential role in improving soil fertility for optimum plant growth and productivity.It is one of the most deficient macro-nutrients in agricultural soils after nitrog...Phosphorus(P)is a critical nutrient that plays an essential role in improving soil fertility for optimum plant growth and productivity.It is one of the most deficient macro-nutrients in agricultural soils after nitrogen and is considered inadequate for plant growth and production.To P availability in soils,the farmers are applying huge amounts of synthetic P fertilizers that adversely affect the wider environment,groundwater,soil fertility and microbial population.Many beneficial microbes are known to release and supply soluble P for improving growth and yield of a variety of plants in a sustainable manner in P deficient soils.Thus,inoculation of these microbes,including arbuscular mycorrhizal fungi(AMF)and phosphate solubilizing bacteria(PSB)to soil to enhance crop production without harming the environment,is an alternative approach to chemical fertilizers.The combined role of AMF and PSB in P solubilization is not well understood and the application and mode of action of these microbial groups are often naive due to variation in the environment.Therefore,the current review article would develop a better understanding of the interactive role and mechanisms of AMF and PSB in improving P availability from both organic and inorganic sources in a sustainable crop production system.Finally,the current review would loop out further avenues for researchers interested to commercially produce effective AMF and PSB-based biofertilizers for sustainable management of phosphorus over a wide range of agricultural crops worldwide.展开更多
In order to develop the resources of native turfgrass,the morphological traits and drought resistance of native Siberian bluegrass(Poa sibirica,abbreviated as PS)was evaluated using the introduced Kentucky bluegrass...In order to develop the resources of native turfgrass,the morphological traits and drought resistance of native Siberian bluegrass(Poa sibirica,abbreviated as PS)was evaluated using the introduced Kentucky bluegrass'Midnight'(Poa pratensis,abbreviated as PP)as a control.Two water schemes were imposed to plants in this pot culture study in greenhouse.One was with drought stress persistent limiting water supply for 20 days,the other was re-hydrated until 14 days after drought.The leaf shape,turf color,water status and cell plasma membrane permeability were evaluated.Similar changing trends with these parameters were shown for both species,and there were not significant differences with most evaluations during drought and re-water periods.The values leaf width and length of PS were higher while leaf color intensity was slightly lower than that of PP,but the greenness of PS leaf was still visually acceptable.There were not significant differences with cell membrane stability between the two species.In comparison,the native wild species PS possessed the potential for to be domesticated into a new cultivar for turf industry.展开更多
Mining provides a wealth of mineral raw materials to human beings, while also causes serious damage to environment and ecology. For decades, landscape renovation in mining wastelands has become a multi-disciplinary re...Mining provides a wealth of mineral raw materials to human beings, while also causes serious damage to environment and ecology. For decades, landscape renovation in mining wastelands has become a multi-disciplinary research focus. However, compared with the developed countries, China has disadvantages of the relevant theoretical researches developing slowly with lacking supporting technology. According to the design principle of "reservation and utilization", we reviewed and summarized the methods of landscape transformation in mining wastelands, furthermore, using the way of researching successful cases at home and abroad. In lined with the specific circumstances in China, the target of landscape transformation and basic theories as methods of strategy was developed. Finally, the overall thinking and suggestions were put forward for the development of landscape transformation in mining wastelands.展开更多
Weed competes with crops for water, nutrients and light so weed infestation is one of the major threats to crop. Present investigation was aimed to asses the comparative efficacy of different herbicides for weed manag...Weed competes with crops for water, nutrients and light so weed infestation is one of the major threats to crop. Present investigation was aimed to asses the comparative efficacy of different herbicides for weed management in wheat crop under agro-climatic conditions of Pakistan. This experiment was laid out in a randomized complete block design (RCBD) design with five replications. Different herbicides were used for weed management in wheat crop. The post emergence application of herbicides included Aim 40 DF @ 0.02 kg a.i. ha-1, Agritop 500 GL-1 @ 0.43 kg a.i. ha-1, Isoproturon 50 WP @ 1 kg a.i. ha-1, Puma super 75 EW @ 0.75 kg, Topik 15 WP @ 0.04 kg and Buctril super 60 EC @ 0.45 kg. For comparison hand weeding and weedy check were also included. In each replication six treatments of these six herbicides were kept. The significantly affected parameters were fresh weed biomass (kg·ha-1), thousand grain weight (g), number of tillers m-2, weed control efficiency (%) and grain yield (kg·ha-1). Statistical analysis showed that maximum weed efficiency (84%) was recorded for Isoproturon 50 WP whereas minimum value (37%) was for Aim 40 DF. Similarly maximum number of tillers m-2 (250) was recorded for Isoproturon 50 WP and minimum (133) in weedy check. The herbicide Isoproturon 50 WP @ 1.0 kg a.i. ha-1 was applied at post emergence performed well and exhibited effectively weed control and better yield in wheat.展开更多
基金This work received financial support from the National Natural Science Foundation in China(Grant No.32060175 and 32060043)Fundamental Research Projects of Yunnan Province(2022530401740002).
文摘Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity.Phenoloxidases(catechol oxidases,COs,and laccases,LACs)are responsible for the oxidation and polymerization of phenolics.However,their origin,evolution,and differential roles during plant development and land colonization are unclear.We performed the phylogeny,domain,amino acids,compositional biases,and intron analyses to clarify the origin and evolution of COs and LACs,and analysed the structure,selective pressure,and chloroplast targeting to understand the species-dependent distribution of COs.We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases(TYRs),and might have been acquired by horizontal gene transfer from bacteria.COs expanded in bryophytes.Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes.LACs emerged in Zygnemaphyceae,having evolved from ascorbate oxidases(AAOs),and prevailed in the vascular plants and strongly expanded in seed plants.COs and LACs coevolved with the phenolic metabolism pathway genes.These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta.COs might be the second key for the early land colonization.LACs were the third one(dominating in the vascular plants)and might be advantageous for diversified phenol substrates and the erect growth of plants.This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
文摘Phosphorus(P)is a critical nutrient that plays an essential role in improving soil fertility for optimum plant growth and productivity.It is one of the most deficient macro-nutrients in agricultural soils after nitrogen and is considered inadequate for plant growth and production.To P availability in soils,the farmers are applying huge amounts of synthetic P fertilizers that adversely affect the wider environment,groundwater,soil fertility and microbial population.Many beneficial microbes are known to release and supply soluble P for improving growth and yield of a variety of plants in a sustainable manner in P deficient soils.Thus,inoculation of these microbes,including arbuscular mycorrhizal fungi(AMF)and phosphate solubilizing bacteria(PSB)to soil to enhance crop production without harming the environment,is an alternative approach to chemical fertilizers.The combined role of AMF and PSB in P solubilization is not well understood and the application and mode of action of these microbial groups are often naive due to variation in the environment.Therefore,the current review article would develop a better understanding of the interactive role and mechanisms of AMF and PSB in improving P availability from both organic and inorganic sources in a sustainable crop production system.Finally,the current review would loop out further avenues for researchers interested to commercially produce effective AMF and PSB-based biofertilizers for sustainable management of phosphorus over a wide range of agricultural crops worldwide.
基金Supported by the National Natural Science Fundation of China(31971772,31772354,31372091)College Student Innovation and Entrepreneurship Training Program of China(201910224035)。
文摘In order to develop the resources of native turfgrass,the morphological traits and drought resistance of native Siberian bluegrass(Poa sibirica,abbreviated as PS)was evaluated using the introduced Kentucky bluegrass'Midnight'(Poa pratensis,abbreviated as PP)as a control.Two water schemes were imposed to plants in this pot culture study in greenhouse.One was with drought stress persistent limiting water supply for 20 days,the other was re-hydrated until 14 days after drought.The leaf shape,turf color,water status and cell plasma membrane permeability were evaluated.Similar changing trends with these parameters were shown for both species,and there were not significant differences with most evaluations during drought and re-water periods.The values leaf width and length of PS were higher while leaf color intensity was slightly lower than that of PP,but the greenness of PS leaf was still visually acceptable.There were not significant differences with cell membrane stability between the two species.In comparison,the native wild species PS possessed the potential for to be domesticated into a new cultivar for turf industry.
文摘Mining provides a wealth of mineral raw materials to human beings, while also causes serious damage to environment and ecology. For decades, landscape renovation in mining wastelands has become a multi-disciplinary research focus. However, compared with the developed countries, China has disadvantages of the relevant theoretical researches developing slowly with lacking supporting technology. According to the design principle of "reservation and utilization", we reviewed and summarized the methods of landscape transformation in mining wastelands, furthermore, using the way of researching successful cases at home and abroad. In lined with the specific circumstances in China, the target of landscape transformation and basic theories as methods of strategy was developed. Finally, the overall thinking and suggestions were put forward for the development of landscape transformation in mining wastelands.
文摘Weed competes with crops for water, nutrients and light so weed infestation is one of the major threats to crop. Present investigation was aimed to asses the comparative efficacy of different herbicides for weed management in wheat crop under agro-climatic conditions of Pakistan. This experiment was laid out in a randomized complete block design (RCBD) design with five replications. Different herbicides were used for weed management in wheat crop. The post emergence application of herbicides included Aim 40 DF @ 0.02 kg a.i. ha-1, Agritop 500 GL-1 @ 0.43 kg a.i. ha-1, Isoproturon 50 WP @ 1 kg a.i. ha-1, Puma super 75 EW @ 0.75 kg, Topik 15 WP @ 0.04 kg and Buctril super 60 EC @ 0.45 kg. For comparison hand weeding and weedy check were also included. In each replication six treatments of these six herbicides were kept. The significantly affected parameters were fresh weed biomass (kg·ha-1), thousand grain weight (g), number of tillers m-2, weed control efficiency (%) and grain yield (kg·ha-1). Statistical analysis showed that maximum weed efficiency (84%) was recorded for Isoproturon 50 WP whereas minimum value (37%) was for Aim 40 DF. Similarly maximum number of tillers m-2 (250) was recorded for Isoproturon 50 WP and minimum (133) in weedy check. The herbicide Isoproturon 50 WP @ 1.0 kg a.i. ha-1 was applied at post emergence performed well and exhibited effectively weed control and better yield in wheat.