Herein we reported the structure effects of carbon nano-shells prepared by the carbonization of polydopamine for the ad- sorption of rare earth elements (REEs) for the first time. Solid carbon spheres, 60 nm carbon ...Herein we reported the structure effects of carbon nano-shells prepared by the carbonization of polydopamine for the ad- sorption of rare earth elements (REEs) for the first time. Solid carbon spheres, 60 nm carbon shells and 500 nm carbon shells were prepared and evaluated for adsorption and desorption of REEs. The adsorption performance of carbon nano-shells for REEs was far superior to the solid carbon spheres. In addition, the effect of acidity on the adsorption and desorption properties was discussed. The good adsorption performance of the carbon nano-shells could be attributed to their pore structure, specific surface area, and the pres- ence of both amine and carbonyl groups from the grafted dopamine.展开更多
Porous liquids,which are liquids with permanent porosity,have received significant attention as a new class of materials with the potential for far-reaching impacts in a variety of applications including gas separatio...Porous liquids,which are liquids with permanent porosity,have received significant attention as a new class of materials with the potential for far-reaching impacts in a variety of applications including gas separation.In this work,in situ Fourier transform infrared spectroscopy measurements were conducted to investigate the mechanism of carbon dioxide absorption in a porous ionic liquid consisting of ZIF-8 combined with 8,80-(3,6-dioxaoctane-1,8-diyl)bis(1,8-diazabicyclo[5.4.0]undec-7-en-8-ium)bis(trifluoromethanesulfonyl)imide([DBU-PEG][(Tf_(2)N)_(2)]).While the vibrational modes of the pure ionic liquid remain relatively unchanged,the incorporation of carbon dioxide leads to slight structural fluctuations in the ZIF-8 framework whether it is pure solid or as integrated into the porous ionic liquid.The analysis of the vibrational modes of the porous ionic liquid suggests that the interaction of the CO_(2) occurs more strongly with the ring structure of the ZIF-8 framework.The splitting of the asymmetric stretch of the CO_(2) into multiple peaks upon sorption indicate the presence of multiple environments,which could be a combination of free and physisorbed CO_(2) or simply multiple binding sites within the porous ionic liquid.A better understanding of gas sorption mechanisms in this unique material could lead to new porous ionic liquids with enhanced separations properties.展开更多
基金supported by the U.S.Department of EnergyOffice of Basic Energy Sciences+2 种基金Division of Chemical SciencesGeosciencesand Biosciences
文摘Herein we reported the structure effects of carbon nano-shells prepared by the carbonization of polydopamine for the ad- sorption of rare earth elements (REEs) for the first time. Solid carbon spheres, 60 nm carbon shells and 500 nm carbon shells were prepared and evaluated for adsorption and desorption of REEs. The adsorption performance of carbon nano-shells for REEs was far superior to the solid carbon spheres. In addition, the effect of acidity on the adsorption and desorption properties was discussed. The good adsorption performance of the carbon nano-shells could be attributed to their pore structure, specific surface area, and the pres- ence of both amine and carbonyl groups from the grafted dopamine.
文摘Porous liquids,which are liquids with permanent porosity,have received significant attention as a new class of materials with the potential for far-reaching impacts in a variety of applications including gas separation.In this work,in situ Fourier transform infrared spectroscopy measurements were conducted to investigate the mechanism of carbon dioxide absorption in a porous ionic liquid consisting of ZIF-8 combined with 8,80-(3,6-dioxaoctane-1,8-diyl)bis(1,8-diazabicyclo[5.4.0]undec-7-en-8-ium)bis(trifluoromethanesulfonyl)imide([DBU-PEG][(Tf_(2)N)_(2)]).While the vibrational modes of the pure ionic liquid remain relatively unchanged,the incorporation of carbon dioxide leads to slight structural fluctuations in the ZIF-8 framework whether it is pure solid or as integrated into the porous ionic liquid.The analysis of the vibrational modes of the porous ionic liquid suggests that the interaction of the CO_(2) occurs more strongly with the ring structure of the ZIF-8 framework.The splitting of the asymmetric stretch of the CO_(2) into multiple peaks upon sorption indicate the presence of multiple environments,which could be a combination of free and physisorbed CO_(2) or simply multiple binding sites within the porous ionic liquid.A better understanding of gas sorption mechanisms in this unique material could lead to new porous ionic liquids with enhanced separations properties.