Let f : M → M be an Anosov diffeomorphism on a nilmanifold. We consider Birkhoff sums for a Holder continuous observation along periodic orbits. We show that if there are two Birkhoff sums distributed at both sides o...Let f : M → M be an Anosov diffeomorphism on a nilmanifold. We consider Birkhoff sums for a Holder continuous observation along periodic orbits. We show that if there are two Birkhoff sums distributed at both sides of zero, then the set of Birkhoff sums of all the periodic points is dense in R.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11771025 and 11831001)supported by National Natural Science Foundation of China(Grant Nos.12071007 and 11831001)。
文摘Let f : M → M be an Anosov diffeomorphism on a nilmanifold. We consider Birkhoff sums for a Holder continuous observation along periodic orbits. We show that if there are two Birkhoff sums distributed at both sides of zero, then the set of Birkhoff sums of all the periodic points is dense in R.