Radio frequency windows are developed and evaluated for a 650 MHz continuous-wave multibeam klystron.Thin-pillbox windows with alumina and beryllia disks are designed with an average RF power of CW 400 kW.Results of a...Radio frequency windows are developed and evaluated for a 650 MHz continuous-wave multibeam klystron.Thin-pillbox windows with alumina and beryllia disks are designed with an average RF power of CW 400 kW.Results of a cold test and tuning procedures are described.The final measured S11 curves under the required bandwidth are less than-32.0 and-26.9 dB for alumina and beryllia windows,respectively.The windows are tested up to CW 143 kW for traveling waves and CW 110 kW for standing waves using a solid-state amplifier as an RF power source.Multipactor simulations for windows and benchmark studies for the thermal analysis of ceramic disks are introduced.展开更多
A gridded thermionic cathode electron gun was developed for the linear accelerator of the High Energy Photon Source(HEPS).An electron gun should provide a large maximum bunch charge with a wide adjustable range.To sat...A gridded thermionic cathode electron gun was developed for the linear accelerator of the High Energy Photon Source(HEPS).An electron gun should provide a large maximum bunch charge with a wide adjustable range.To satisfy these requirements,the shape of the electrode was optimized using a multi-objective genetic algorithm.A large bunch charge with an adjustable range was achieved using the grid-limited gun,the flow of which was analyzed using 3-D simulations.The electron gun has been manufactured and tested,and the measured data of the grid-limited current and simulation results are compared and discussed in this study.展开更多
To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k...To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k W continuous wave(CW) klystron operating at frequency of 650-MHz has been designed. The results of beam–wave interaction simulation with several different codes are presented. The efficiency is optimized to be 65% with a second harmonic cavity in three-dimensional(3D) particle-in-cell code CST. The effect of cavity frequency error and mismatch load on efficiency of klystron have been investigated. The design and cold test of reentrant cavities are described, which meet the requirements of RF section design. So far, the manufacturing and high-power test of the first klystron prototype have been completed.When the gun operated at DC voltage of 80 k V and current of 15.4 A, the klystron peak power reached 804 k W with output efficiency of about 65.3% at 40% duty cycle. The 1-d B bandwidth is ±0.8 MHZ. Due to the crack of ceramic window, the CW power achieved about 700 kW. The high-power test results are in good agreement with 3D simulation.展开更多
The 10-MeV Accelerator-Driven Subcritical(ADS)system Injector-I test stand at the Institute of High Energy Physics(IHEP)is a testing facility dedicated to demonstrating the feasibility of the spoke-based super-conduct...The 10-MeV Accelerator-Driven Subcritical(ADS)system Injector-I test stand at the Institute of High Energy Physics(IHEP)is a testing facility dedicated to demonstrating the feasibility of the spoke-based super-conducting(SC)linear accelerator(linac)for the ADS project in China.The injector adopted a four-vane copper structure radio frequency quadrupole(RFQ)with an output energy of 3.2 MeV and an SC section accommodating 14 β_(g)=0.12 single spoke cavities,14 SC solenoids,and 14 cold beam position monitors(BPMs).A 10-MeV pulsed beam with a beam current of 10 mA and a 2-mA continuous wave(CW)beam were successfully shooting through.The commissioning results confirmed the feasibility of using a 325-MHz spoke-type cavity for accelerating the proton beam in the low β and medium β sections.This paper describes the results achieved,the difficulties encountered,and the experiences obtained during commissioning.展开更多
We found an error in our previous report [Chin. Phys. Lett. 34 (2017) 012902] concerning about the value of voltage on the modulating anode (MA). This mistake occurs when we shifted calculating positive scale to a...We found an error in our previous report [Chin. Phys. Lett. 34 (2017) 012902] concerning about the value of voltage on the modulating anode (MA). This mistake occurs when we shifted calculating positive scale to actual negative voltage scale in the DGUN simulation. The value of voltage on the MA is VMA = -33.5 kV as displayed in Table 1. Also Figs. 2(a), 2(b) and 4(a) should be as follows. We note that the error does not affect the conclusion of our report at all, and we apologize for inconvenience of readers brought by our oversight.展开更多
Purpose The High-Energy Photon Source(HEPS)is a 6 GeV storage ring-based light source under construction in Beijing,China.Its accelerator consists of a 6 GeV storage ring,a full-energy booster,an S-band normal-conduct...Purpose The High-Energy Photon Source(HEPS)is a 6 GeV storage ring-based light source under construction in Beijing,China.Its accelerator consists of a 6 GeV storage ring,a full-energy booster,an S-band normal-conducting 500 MeV linac,and three transport lines.As the beginning of HEPS,a stable linac is quite important,which needs a qualified waveguide distribution system to transmit microwave power from klystrons to accelerating structures.Methods Installation and high-power conditioning of the HEPS linac were performed from February to September 2022.The assembly and conditioning of the waveguide distribution system were completed in April and July,respectively.The design of the waveguide distribution system began in 2018 and was finalized at the end of 2020 after multiple iterations.Results Owing to careful design,fabrication,and assembly preparation,the assembly and conditioning of the system proceeded smoothly and considerable time was saved.Conclusion The entire process from the design to the ultimate realization of the system is introduced in detail in this paper.Satisfactory measurement results were obtained for some waveguide components.展开更多
Purpose A novel high-directivity high-power waveguide directional coupler(DC)working at 2998.8 MHz is developed for the High Energy Photon Source.It can help the phase control system to obtain a very accurate microwav...Purpose A novel high-directivity high-power waveguide directional coupler(DC)working at 2998.8 MHz is developed for the High Energy Photon Source.It can help the phase control system to obtain a very accurate microwave signal,which is very important to minimize the beam emittance.Methods The novel reversely placed T-type coupling piece helps to obtain a high directivity.The N-type high-vacuum feedthroughs for vacuum sealing instead of the traditional ceramic plate is beneficial to holding a higher peak power.The simulation and the high-power commissioning are accomplished in the Institute of High Energy Physics(IHEP),while the fabrication and the low-power test are conducted in cooperation with the manufacturer.Results Both the single-coupler and the dual-coupler DCs are developed with a directivity of more than 35 dB while keeping the coupling factor within 60±0.5 dB.Finally,69.4%of all the fifty-two mass produced DCs have got a directivity of more than 40 dB.Conclusion:The mature manufacturing process for mass production is obtained.The novel high-directivity high-power waveguide DC can be mass produced with an actually internationally leading performance.展开更多
文摘Radio frequency windows are developed and evaluated for a 650 MHz continuous-wave multibeam klystron.Thin-pillbox windows with alumina and beryllia disks are designed with an average RF power of CW 400 kW.Results of a cold test and tuning procedures are described.The final measured S11 curves under the required bandwidth are less than-32.0 and-26.9 dB for alumina and beryllia windows,respectively.The windows are tested up to CW 143 kW for traveling waves and CW 110 kW for standing waves using a solid-state amplifier as an RF power source.Multipactor simulations for windows and benchmark studies for the thermal analysis of ceramic disks are introduced.
文摘A gridded thermionic cathode electron gun was developed for the linear accelerator of the High Energy Photon Source(HEPS).An electron gun should provide a large maximum bunch charge with a wide adjustable range.To satisfy these requirements,the shape of the electrode was optimized using a multi-objective genetic algorithm.A large bunch charge with an adjustable range was achieved using the grid-limited gun,the flow of which was analyzed using 3-D simulations.The electron gun has been manufactured and tested,and the measured data of the grid-limited current and simulation results are compared and discussed in this study.
基金Project supported by Yifang Wang’s Science Studio of the Ten Thousand Talents Project。
文摘To reduce the energy demand and operation cost for circular electron positron collider(CEPC), the high efficiency klystrons are being developed at Institute of High Energy Physics, Chinese Academy of Sciences. A 800-k W continuous wave(CW) klystron operating at frequency of 650-MHz has been designed. The results of beam–wave interaction simulation with several different codes are presented. The efficiency is optimized to be 65% with a second harmonic cavity in three-dimensional(3D) particle-in-cell code CST. The effect of cavity frequency error and mismatch load on efficiency of klystron have been investigated. The design and cold test of reentrant cavities are described, which meet the requirements of RF section design. So far, the manufacturing and high-power test of the first klystron prototype have been completed.When the gun operated at DC voltage of 80 k V and current of 15.4 A, the klystron peak power reached 804 k W with output efficiency of about 65.3% at 40% duty cycle. The 1-d B bandwidth is ±0.8 MHZ. Due to the crack of ceramic window, the CW power achieved about 700 kW. The high-power test results are in good agreement with 3D simulation.
基金This work was supported by Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030201)the Key Laboratory of Particle Acceleration Physics and Technology Autonomous Foundation of CAS China(No.JSQ2017ZZ01).
文摘The 10-MeV Accelerator-Driven Subcritical(ADS)system Injector-I test stand at the Institute of High Energy Physics(IHEP)is a testing facility dedicated to demonstrating the feasibility of the spoke-based super-conducting(SC)linear accelerator(linac)for the ADS project in China.The injector adopted a four-vane copper structure radio frequency quadrupole(RFQ)with an output energy of 3.2 MeV and an SC section accommodating 14 β_(g)=0.12 single spoke cavities,14 SC solenoids,and 14 cold beam position monitors(BPMs).A 10-MeV pulsed beam with a beam current of 10 mA and a 2-mA continuous wave(CW)beam were successfully shooting through.The commissioning results confirmed the feasibility of using a 325-MHz spoke-type cavity for accelerating the proton beam in the low β and medium β sections.This paper describes the results achieved,the difficulties encountered,and the experiences obtained during commissioning.
文摘We found an error in our previous report [Chin. Phys. Lett. 34 (2017) 012902] concerning about the value of voltage on the modulating anode (MA). This mistake occurs when we shifted calculating positive scale to actual negative voltage scale in the DGUN simulation. The value of voltage on the MA is VMA = -33.5 kV as displayed in Table 1. Also Figs. 2(a), 2(b) and 4(a) should be as follows. We note that the error does not affect the conclusion of our report at all, and we apologize for inconvenience of readers brought by our oversight.
基金Funded by Youth Innovation Promotion Association CAS(2020015)and the HEPS project.
文摘Purpose The High-Energy Photon Source(HEPS)is a 6 GeV storage ring-based light source under construction in Beijing,China.Its accelerator consists of a 6 GeV storage ring,a full-energy booster,an S-band normal-conducting 500 MeV linac,and three transport lines.As the beginning of HEPS,a stable linac is quite important,which needs a qualified waveguide distribution system to transmit microwave power from klystrons to accelerating structures.Methods Installation and high-power conditioning of the HEPS linac were performed from February to September 2022.The assembly and conditioning of the waveguide distribution system were completed in April and July,respectively.The design of the waveguide distribution system began in 2018 and was finalized at the end of 2020 after multiple iterations.Results Owing to careful design,fabrication,and assembly preparation,the assembly and conditioning of the system proceeded smoothly and considerable time was saved.Conclusion The entire process from the design to the ultimate realization of the system is introduced in detail in this paper.Satisfactory measurement results were obtained for some waveguide components.
基金Funded by Youth Innovation Promotion Association CAS(2020015)
文摘Purpose A novel high-directivity high-power waveguide directional coupler(DC)working at 2998.8 MHz is developed for the High Energy Photon Source.It can help the phase control system to obtain a very accurate microwave signal,which is very important to minimize the beam emittance.Methods The novel reversely placed T-type coupling piece helps to obtain a high directivity.The N-type high-vacuum feedthroughs for vacuum sealing instead of the traditional ceramic plate is beneficial to holding a higher peak power.The simulation and the high-power commissioning are accomplished in the Institute of High Energy Physics(IHEP),while the fabrication and the low-power test are conducted in cooperation with the manufacturer.Results Both the single-coupler and the dual-coupler DCs are developed with a directivity of more than 35 dB while keeping the coupling factor within 60±0.5 dB.Finally,69.4%of all the fifty-two mass produced DCs have got a directivity of more than 40 dB.Conclusion:The mature manufacturing process for mass production is obtained.The novel high-directivity high-power waveguide DC can be mass produced with an actually internationally leading performance.