On 2020 April 27,the soft gamma-ray repeater SGR J1935+2154 entered its intense outburst episode again.Insight-HXMT carried out about one month observation of the source.A total number of 75 bursts were detected durin...On 2020 April 27,the soft gamma-ray repeater SGR J1935+2154 entered its intense outburst episode again.Insight-HXMT carried out about one month observation of the source.A total number of 75 bursts were detected during this activity episode by Insight-HXMT,and persistent emission data were also accumulated.We report on the spin period search result and the phase distribution of burst start times and burst photon arrival times of the Insight-HXMT high energy detectors and Fermi/Gamma-ray Burst Monitor(GBM).We find that the distribution of burst start times is uniform within its spin phase for both Insight-HXMT and Fermi/GBM observations,whereas the phase distribution of burst photons is related to the type of a burst’s energy spectrum.The bursts with the same spectrum have different distribution characteristics in the initial and decay episodes for the activity of magnetar SGR J1935+2154.展开更多
We investigate high time resolution data obtained by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)during the flare event on 2022 April 21 at 01:52 UT.Several subpeaks with durat...We investigate high time resolution data obtained by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)during the flare event on 2022 April 21 at 01:52 UT.Several subpeaks with durations of 4-6 s have been detected in the hard X-ray precursor phase,and the key feature is that they appear in pairs and seem like double-peak struc-tures.These subpeaks are rarely observed in hard X-ray band and confirmed by the microwave obtained by Nobeyama Radio Polarimeters(NoRP)and Radio Solar Telescope Network(RSTN).While an exponential function can describe the continuum component of the time profile from the precursor to part of the impulsive phase.The periods of quasi-periodic pulsations(QPPs)are detected to be about 7.3 and 12.8 s for the precursor and impulsive phase,respectively,with at least 95%confidence level.The paired QPPs are assumed to be double-peak QPPs and then the scenario of current loop coalescence model is found to be in good agreement with our observation.The precursor phase can be interpreted as the oscillating coalescence of two islands,while the impulsive phase can be interpreted as more islands to coalesce one by one to form larger islands.展开更多
基金partially supported by International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020)the National Key R&D Program of China(2021YFA0718500)from the Minister of Science and Technology of China(MOST)The authors thank supports from the National Natural Science Foundation of China under Grants U1938109,U1838201,U1838202,12173103,U2038101,U1938103,12133007,U1938201 and 11733009。
文摘On 2020 April 27,the soft gamma-ray repeater SGR J1935+2154 entered its intense outburst episode again.Insight-HXMT carried out about one month observation of the source.A total number of 75 bursts were detected during this activity episode by Insight-HXMT,and persistent emission data were also accumulated.We report on the spin period search result and the phase distribution of burst start times and burst photon arrival times of the Insight-HXMT high energy detectors and Fermi/Gamma-ray Burst Monitor(GBM).We find that the distribution of burst start times is uniform within its spin phase for both Insight-HXMT and Fermi/GBM observations,whereas the phase distribution of burst photons is related to the type of a burst’s energy spectrum.The bursts with the same spectrum have different distribution characteristics in the initial and decay episodes for the activity of magnetar SGR J1935+2154.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1938102, and 11973092)the National Program on Key Research and Development Project (Grant No. 2016YFA0400802)supported by the Surface Project of Jiangsu Province (Grant No. BK20211402)
文摘We investigate high time resolution data obtained by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)during the flare event on 2022 April 21 at 01:52 UT.Several subpeaks with durations of 4-6 s have been detected in the hard X-ray precursor phase,and the key feature is that they appear in pairs and seem like double-peak struc-tures.These subpeaks are rarely observed in hard X-ray band and confirmed by the microwave obtained by Nobeyama Radio Polarimeters(NoRP)and Radio Solar Telescope Network(RSTN).While an exponential function can describe the continuum component of the time profile from the precursor to part of the impulsive phase.The periods of quasi-periodic pulsations(QPPs)are detected to be about 7.3 and 12.8 s for the precursor and impulsive phase,respectively,with at least 95%confidence level.The paired QPPs are assumed to be double-peak QPPs and then the scenario of current loop coalescence model is found to be in good agreement with our observation.The precursor phase can be interpreted as the oscillating coalescence of two islands,while the impulsive phase can be interpreted as more islands to coalesce one by one to form larger islands.