Metal carbides play an important role in catalysis and functional materials.However,the structural characterization of metal carbide clusters has been proven to be a challenging experimental target due to the difficul...Metal carbides play an important role in catalysis and functional materials.However,the structural characterization of metal carbide clusters has been proven to be a challenging experimental target due to the difficulty in size selection.Here we use the size-specific photoelectron velocity-map imaging spectroscopy to study the structures and properties of platinum carbide clusters.Quantum chemical calculations are carried out to identify the structures and to assign the experimental spectra.The results indicate that the cluster size of the chain-to-ring structural evolution for the PtC_(n)^(-)anions occurs at n=14,whereas that for the PtC_(n) neutrals at n=10,revealing a significant effect of charge on the structures of metal carbides.The greatest importance of these building blocks is the strong preference of the Pt atom to expose in the outer side of the chain or ring,exhibiting the active sites for catalyzing potential reactions.These findings provide unique spectroscopic snapshots for the formation and growth of platinum carbide clusters and have important implications in the development of related single-atom catalysts with isolated metal atoms dispersed on supports.展开更多
A series of heterotrinuclear Ti_(2)Ni(CO)_(n)^(-)(n=6-9)carbonyls have been generated via a laser vaporization supersonic cluster source and characterized by mass-selected photoelectron velocity-map imaging spectrosco...A series of heterotrinuclear Ti_(2)Ni(CO)_(n)^(-)(n=6-9)carbonyls have been generated via a laser vaporization supersonic cluster source and characterized by mass-selected photoelectron velocity-map imaging spectroscopy.Quantum chemical calculations have been carried out to identify the structures and understand the experimental spectral features.The results indicate that a building block of Ti-Ti-Ni-C four-membered ring with the C atom bonded to Ti,Ti,and Ni is dominated in the n=6-8 complexes,whereas a structural motif of Ti-Ti-Ni triangle core is preferred in n=9.These complexes are found to be capable of simultaneously accommodating all the main modes of metal-CO coordination(i.e.,terminal,bridging,and side-on modes),where the corresponding mode points to the weak,moderate,high C-O bond activation,respectively.The number of CO ligands for a specific bonding mode varies with the cluster size.These findings have important implications for molecular-level understanding of the interaction of CO with alloy surfaces/interfaces and tuning the appropriate CO activation via the selection of different metals.展开更多
基金supported by the National Natural Science Foundation of China(22273101,22103082,22125303,92061203,and 22288201)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS)(2020187)+3 种基金the Innovation Program for Quantum Science and Technology(2021ZD0303304)Chinese Academy of Sciences(GJJSTD20220001)Dalian Institute of Chemical Physics(DICP DCLS201702)K.C.Wong Education Foundation(GJTD-201806)。
文摘Metal carbides play an important role in catalysis and functional materials.However,the structural characterization of metal carbide clusters has been proven to be a challenging experimental target due to the difficulty in size selection.Here we use the size-specific photoelectron velocity-map imaging spectroscopy to study the structures and properties of platinum carbide clusters.Quantum chemical calculations are carried out to identify the structures and to assign the experimental spectra.The results indicate that the cluster size of the chain-to-ring structural evolution for the PtC_(n)^(-)anions occurs at n=14,whereas that for the PtC_(n) neutrals at n=10,revealing a significant effect of charge on the structures of metal carbides.The greatest importance of these building blocks is the strong preference of the Pt atom to expose in the outer side of the chain or ring,exhibiting the active sites for catalyzing potential reactions.These findings provide unique spectroscopic snapshots for the formation and growth of platinum carbide clusters and have important implications in the development of related single-atom catalysts with isolated metal atoms dispersed on supports.
基金supported by the National Natural Science Foundation of China(Nos.21873097,22103082,92061203,22125303 and 22288201)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS,No.2020187)the Strategic Priority Research Program of CAS(No.XDB17000000)。
文摘A series of heterotrinuclear Ti_(2)Ni(CO)_(n)^(-)(n=6-9)carbonyls have been generated via a laser vaporization supersonic cluster source and characterized by mass-selected photoelectron velocity-map imaging spectroscopy.Quantum chemical calculations have been carried out to identify the structures and understand the experimental spectral features.The results indicate that a building block of Ti-Ti-Ni-C four-membered ring with the C atom bonded to Ti,Ti,and Ni is dominated in the n=6-8 complexes,whereas a structural motif of Ti-Ti-Ni triangle core is preferred in n=9.These complexes are found to be capable of simultaneously accommodating all the main modes of metal-CO coordination(i.e.,terminal,bridging,and side-on modes),where the corresponding mode points to the weak,moderate,high C-O bond activation,respectively.The number of CO ligands for a specific bonding mode varies with the cluster size.These findings have important implications for molecular-level understanding of the interaction of CO with alloy surfaces/interfaces and tuning the appropriate CO activation via the selection of different metals.