A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests we...A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path.展开更多
This paper introduces the characteristics of Computed Tomography (CT) technology and reviews its history, current situation, representative achievements, and use of using CT technology on frozen soil study, includin...This paper introduces the characteristics of Computed Tomography (CT) technology and reviews its history, current situation, representative achievements, and use of using CT technology on frozen soil study, including auxiliary equipment specially de- signed for frozen soil studies. CT numbers are used to analyze frozen soil internal structure change, defining and exploring dam- age evolution, and use of CT images on observing soil mesostructure. Finally, this paper presents existing problems confronted by using CT in frozen soil studies, possible solutions and challenges, among which, we introduce high quality CT image processing for frozen soils, and relations between CT number change and each component change on frozen soil samples within the region of interest. It is shown that present CT technology is one of the most ideal and effective technology to study frozen soil mesostructure using non-desmactive testing. CT technology will play a key role in the study and development in the field of frozen soil by means of auxiliary equipment and the digital imaging processing.展开更多
Objective: To explore the clinical effect of lumbar pool drainage combined with antibiotics in the treatment of patients with intracranial infections, and to provide a reference basis for clinical treatment. Methods: ...Objective: To explore the clinical effect of lumbar pool drainage combined with antibiotics in the treatment of patients with intracranial infections, and to provide a reference basis for clinical treatment. Methods: To collect and select patients admitted to the First People’s Hospital of Jingzhou City for craniotomy from January 2016 to June 2022, the infected were 20 cases, and continuous drainage of the lumbar pool was used under the premise of systemic application of sensitive antibiotics. Results: Twenty cases in this group were discharged cured. Conclusion: Lumbar pool placement drainage combined with systemic application of antibiotics for intracranial infection is a safe and effective treatment method.展开更多
The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroat...The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroatom La^(3+)doping strategy.As demonstrated,La^(3+)with a large radius can be doped successfully into the spinel lattice of(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4),thereby not only causing lattice distortion to increase oxygen vacancies but also refining crystalline grains and improving the specific area.Compared with the(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)anode,the(La_(0.01)CoCrFeMnNi)_(3/5.01)O_(4) anode with moderate doping exhibits excellent cycling performance(1228 mAh·g^(−1)after 400 cycles at 0.2 A·g^(−1))and yields an increase of 75%rate capability at 3 A·g^(−1)(420 mAh·g^(−1)at 3 A·g^(−1)).The desirable kinetic transport of electrons and diffusion of Li+within the moderately La^(3+)-doped anode and the synergistic interfacial pseudocapacitive behavior satisfy the redox reaction at a high rate,thus increasing rate capability.展开更多
The thyroid is an essential endocrine organ in human body,and thyroid hormones(THs)are pivotal signaling molecules and mediators in various physiological processes.THs,particularly in their free form,play a critical r...The thyroid is an essential endocrine organ in human body,and thyroid hormones(THs)are pivotal signaling molecules and mediators in various physiological processes.THs,particularly in their free form,play a critical role in regulating body temperature and in the metabolism of lipid and glucose,making the maintenance of TH levels crucial for human health.THs undergo a series of metabolic processes,producing TH metabolites(THMs).THMs are significant in endocrine regulation,such as 3,5-diiothyronine(3,5-T2)and 3-iodothyronamine(3-T1AM),which exhibit activities akin to THs.The production and distribution of THMs are intricately linked to the function of specific organs and tissues,highlighting the need for advanced research into the determination and mechanisms of THMs in body.Exposure to endocrine disrupting chemicals(EDCs)can significantly affect the levels of thyroid stimulating hormone(TSH)and THs.This review utilizes machine learning to analyze epidemiological data,identifying potential EDCs that pose risks of hyperthyroidism and hypothyroidism.Additionally,it delves into the toxicological mechanisms of these EDCs,examining their effects on TH production,binding processes,related proteins,and metabolic enzymes.This approach effectively bridges the gap between epidemiological studies and toxicological researches,laying the groundwork for future research trends.By integrating epidemiological studies with machine learning,this review offers insightful perspectives on the potential risks associated with chemical exposure and underscores the necessity for further research in understanding the impact of EDCs on TH metabolism and TH-related health effects.展开更多
High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein...High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated.展开更多
The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,imp...The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,improving heat exchange efficiency is key to achieving the optimal exploitation of HDR.In this paper,granite outcrops from Gonghe Basin were used as the testing sample.The natural fractures in the granite samples were relatively well developed.To simulate long-term injection and production from multi-wells in situ,physical ex-periments were performed in a newly-developed,in-house large-scale true triaxial experimental system.Geothermal extraction performance of an HDR was simulated for long-term injection and production operations.Simultaneously,the mode of one-injection and multiple-production wells was represented.In the paper,the ef-fects of the production-injection well spacing,the number of production wells and the injection rate on the production temperature and flow rate are discussed.The results show that,during long-term injection and pro-duction,there are two stages of production temperature variation,namely stabilization and attenuation.When the number of the production wells is increased,the heat extraction efficiency is accelerated.Moreover,competitive diversion of fluid among fractures occurred due to different conductivities.Furthermore,under different pro-duction modes,the production flow rate contributed differently to the heat extraction.Finally,the effect of the production-injection wells spacing on the heat exchange performance was analyzed;this is mainly reflected in the change of the effective heat exchange area between the rock and the injected fluid.The results emphasize the importance of designing an appropriate production mode and optimizing the injection-production parameters to ensure efficient HDR exploitation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1703244 and 41672310)the National Natural Science Foundation of China(No.41801038)+6 种基金the State Key Laboratory for Geo Mechanics and Deep Underground Engineering,the China University of Mining and Technology(SKLGDUEK1904)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA2003020102)the Major Program of Bureau of International Cooperation,the Chinese Academy of Sciences(131B62KYSB20170012)the National Key Research and Development Program(2017YFC0405101)the Research Project of the State Key Laboratory of Frozen Soils Engineering(Grant No.SKLFSE-ZY-16)the Science and Technology Major Project of Gansu Province(143GKDA007)the Science and Technology Planning Project of Gansu Province(No.18JR3RA376)
文摘A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path.
基金financially supported by the National Natural Science Foundation of China(Nos.4102300340971046+3 种基金41201181)the Foundation of State Key Laboratory of Frozen Soil Engineering(No.Y252J81001)the Youth Foundation of Cold and Arid Regions Environmental Engineering Research InstituteChinese Academy of Sciences(No.51Y251B91)
文摘This paper introduces the characteristics of Computed Tomography (CT) technology and reviews its history, current situation, representative achievements, and use of using CT technology on frozen soil study, including auxiliary equipment specially de- signed for frozen soil studies. CT numbers are used to analyze frozen soil internal structure change, defining and exploring dam- age evolution, and use of CT images on observing soil mesostructure. Finally, this paper presents existing problems confronted by using CT in frozen soil studies, possible solutions and challenges, among which, we introduce high quality CT image processing for frozen soils, and relations between CT number change and each component change on frozen soil samples within the region of interest. It is shown that present CT technology is one of the most ideal and effective technology to study frozen soil mesostructure using non-desmactive testing. CT technology will play a key role in the study and development in the field of frozen soil by means of auxiliary equipment and the digital imaging processing.
文摘Objective: To explore the clinical effect of lumbar pool drainage combined with antibiotics in the treatment of patients with intracranial infections, and to provide a reference basis for clinical treatment. Methods: To collect and select patients admitted to the First People’s Hospital of Jingzhou City for craniotomy from January 2016 to June 2022, the infected were 20 cases, and continuous drainage of the lumbar pool was used under the premise of systemic application of sensitive antibiotics. Results: Twenty cases in this group were discharged cured. Conclusion: Lumbar pool placement drainage combined with systemic application of antibiotics for intracranial infection is a safe and effective treatment method.
基金supported by the University Natural Science Research Project of Anhui Province in China(No.2023AH051104)the Director’s Fund of Key Laboratory of Green Fabrication and Surface Technology of Advance Metal Materials,Ministry of Education(No.GFST2022ZR08).
文摘The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroatom La^(3+)doping strategy.As demonstrated,La^(3+)with a large radius can be doped successfully into the spinel lattice of(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4),thereby not only causing lattice distortion to increase oxygen vacancies but also refining crystalline grains and improving the specific area.Compared with the(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)anode,the(La_(0.01)CoCrFeMnNi)_(3/5.01)O_(4) anode with moderate doping exhibits excellent cycling performance(1228 mAh·g^(−1)after 400 cycles at 0.2 A·g^(−1))and yields an increase of 75%rate capability at 3 A·g^(−1)(420 mAh·g^(−1)at 3 A·g^(−1)).The desirable kinetic transport of electrons and diffusion of Li+within the moderately La^(3+)-doped anode and the synergistic interfacial pseudocapacitive behavior satisfy the redox reaction at a high rate,thus increasing rate capability.
基金funded by the National Natural Science Foundation of China(42277425,42161134001,U22A20614)“the Fundamental Research Funds for the Central Universities”,Nankai University(63171109)+4 种基金sponsored by Tianjin Health Research Project(TJWJ2023MS028)Tianjin Science and Technology planning project(21JCZDJC00330)National Clinical Key Discipline Cohort Study Project(GJZDZKZBDL 2022-)Tianjin Key Medical Discipline(Specialty)Construction Project(TJYXZDXK-043A)Ministry of Education,China(T2017002).
文摘The thyroid is an essential endocrine organ in human body,and thyroid hormones(THs)are pivotal signaling molecules and mediators in various physiological processes.THs,particularly in their free form,play a critical role in regulating body temperature and in the metabolism of lipid and glucose,making the maintenance of TH levels crucial for human health.THs undergo a series of metabolic processes,producing TH metabolites(THMs).THMs are significant in endocrine regulation,such as 3,5-diiothyronine(3,5-T2)and 3-iodothyronamine(3-T1AM),which exhibit activities akin to THs.The production and distribution of THMs are intricately linked to the function of specific organs and tissues,highlighting the need for advanced research into the determination and mechanisms of THMs in body.Exposure to endocrine disrupting chemicals(EDCs)can significantly affect the levels of thyroid stimulating hormone(TSH)and THs.This review utilizes machine learning to analyze epidemiological data,identifying potential EDCs that pose risks of hyperthyroidism and hypothyroidism.Additionally,it delves into the toxicological mechanisms of these EDCs,examining their effects on TH production,binding processes,related proteins,and metabolic enzymes.This approach effectively bridges the gap between epidemiological studies and toxicological researches,laying the groundwork for future research trends.By integrating epidemiological studies with machine learning,this review offers insightful perspectives on the potential risks associated with chemical exposure and underscores the necessity for further research in understanding the impact of EDCs on TH metabolism and TH-related health effects.
基金supported by the Natural Science Foundation of Anhui Province(Grant No.2008085ME125)University Natural Science Research Project of Anhui Province(Grant Nos.KJ2020A0268 and KJ2020A0270).
文摘High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated.
文摘The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,improving heat exchange efficiency is key to achieving the optimal exploitation of HDR.In this paper,granite outcrops from Gonghe Basin were used as the testing sample.The natural fractures in the granite samples were relatively well developed.To simulate long-term injection and production from multi-wells in situ,physical ex-periments were performed in a newly-developed,in-house large-scale true triaxial experimental system.Geothermal extraction performance of an HDR was simulated for long-term injection and production operations.Simultaneously,the mode of one-injection and multiple-production wells was represented.In the paper,the ef-fects of the production-injection well spacing,the number of production wells and the injection rate on the production temperature and flow rate are discussed.The results show that,during long-term injection and pro-duction,there are two stages of production temperature variation,namely stabilization and attenuation.When the number of the production wells is increased,the heat extraction efficiency is accelerated.Moreover,competitive diversion of fluid among fractures occurred due to different conductivities.Furthermore,under different pro-duction modes,the production flow rate contributed differently to the heat extraction.Finally,the effect of the production-injection wells spacing on the heat exchange performance was analyzed;this is mainly reflected in the change of the effective heat exchange area between the rock and the injected fluid.The results emphasize the importance of designing an appropriate production mode and optimizing the injection-production parameters to ensure efficient HDR exploitation.