期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Unsupervised Log Anomaly Detection Method Based on Multi-Feature 被引量:2
1
作者 shiming he Tuo Deng +2 位作者 Bowen Chen R.Simon Sherratt Jin Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期517-541,共25页
Log anomaly detection is an important paradigm for system troubleshooting.Existing log anomaly detection based on Long Short-Term Memory(LSTM)networks is time-consuming to handle long sequences.Transformer model is in... Log anomaly detection is an important paradigm for system troubleshooting.Existing log anomaly detection based on Long Short-Term Memory(LSTM)networks is time-consuming to handle long sequences.Transformer model is introduced to promote efficiency.However,most existing Transformer-based log anomaly detection methods convert unstructured log messages into structured templates by log parsing,which introduces parsing errors.They only extract simple semantic feature,which ignores other features,and are generally supervised,relying on the amount of labeled data.To overcome the limitations of existing methods,this paper proposes a novel unsupervised log anomaly detection method based on multi-feature(UMFLog).UMFLog includes two sub-models to consider two kinds of features:semantic feature and statistical feature,respectively.UMFLog applies the log original content with detailed parameters instead of templates or template IDs to avoid log parsing errors.In the first sub-model,UMFLog uses Bidirectional Encoder Representations from Transformers(BERT)instead of random initialization to extract effective semantic feature,and an unsupervised hypersphere-based Transformer model to learn compact log sequence representations and obtain anomaly candidates.In the second sub-model,UMFLog exploits a statistical feature-based Variational Autoencoder(VAE)about word occurrence times to identify the final anomaly from anomaly candidates.Extensive experiments and evaluations are conducted on three real public log datasets.The results show that UMFLog significantly improves F1-scores compared to the state-of-the-art(SOTA)methods because of the multi-feature. 展开更多
关键词 System log anomaly detection semantic features statistical features TRANSFORMER
下载PDF
Fine-Grained Multivariate Time Series Anomaly Detection in IoT 被引量:1
2
作者 shiming he Meng Guo +4 位作者 Bo Yang Osama Alfarraj Amr Tolba Pradip Kumar Sharma Xi’ai Yan 《Computers, Materials & Continua》 SCIE EI 2023年第6期5027-5047,共21页
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m... Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection. 展开更多
关键词 Multivariate time series graph attention neural network fine-grained anomaly detection
下载PDF
An accurate diagnostic approach for urothelial carcinomas based on novel dual methylated DNA markers in small-volume urine
3
作者 Yucai Wu Di Cai +15 位作者 Jian Fan Chang Meng shiming he Zhihua Li Lianghao Zhang Kunlin Yang Aixiang Wang Xinfei Li Yicong Du Shengwei Xiong Mancheng Xia Tingting Li Lanlan Dong YanqingGong Liqun Zhou Xuesong Li 《Chinese Medical Journal》 SCIE CAS CSCD 2024年第2期232-234,共3页
Diagnostic methods for urothelial carcinomas(UCs)are often invasive or have suboptimal accuracy.Methylation of exfoliated cell DNA or cell-free DNA in urine has shown great promise in the diagnosis of UCs.However,most... Diagnostic methods for urothelial carcinomas(UCs)are often invasive or have suboptimal accuracy.Methylation of exfoliated cell DNA or cell-free DNA in urine has shown great promise in the diagnosis of UCs.However,most current studies have focused on bladder cancer(BCa),and only a few high-plex methylated DNA panels based on large-volume urine have been reported to exhibit both high sensitivity and specificity.[1,2]The purpose of this study was to identify universal biomarkers for BCa and upper tract urothelial carcinoma(UTUC)using a small volume of urine.We developed a dual-target diagnostic panel comprising the novel marker AL021918.2 and the well-known BCa biomarker Vimentin(VIM).This panel can accurately detect UCs using only 1.8 mL of full-voided urine. 展开更多
关键词 URINE BLADDER DIAGNOSIS
原文传递
Parameters Compressing in Deep Learning 被引量:9
4
作者 shiming he Zhuozhou Li +3 位作者 Yangning Tang Zhuofan Liao Feng Li Se-Jung Lim 《Computers, Materials & Continua》 SCIE EI 2020年第1期321-336,共16页
With the popularity of deep learning tools in image decomposition and natural language processing,how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem... With the popularity of deep learning tools in image decomposition and natural language processing,how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem to be solved.These parameters are huge and can be as many as millions.At present,a feasible direction is to use the sparse representation technique to compress the parameter matrix to achieve the purpose of reducing parameters and reducing the storage pressure.These methods include matrix decomposition and tensor decomposition.To let vector take advance of the compressing performance of matrix decomposition and tensor decomposition,we use reshaping and unfolding to let vector be the input and output of Tensor-Factorized Neural Networks.We analyze how reshaping can get the best compress ratio.According to the relationship between the shape of tensor and the number of parameters,we get a lower bound of the number of parameters.We take some data sets to verify the lower bound. 展开更多
关键词 Deep neural network parameters compressing matrix decomposition tensor decomposition
下载PDF
LogUAD: Log Unsupervised Anomaly Detection Based on Word2Vec 被引量:2
5
作者 Jin Wang Changqing Zhao +3 位作者 shiming he Yu Gu Osama Alfarraj Ahed Abugabah 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1207-1222,共16页
System logs record detailed information about system operation and areimportant for analyzing the system's operational status and performance. Rapidand accurate detection of system anomalies is of great significan... System logs record detailed information about system operation and areimportant for analyzing the system's operational status and performance. Rapidand accurate detection of system anomalies is of great significance to ensure system stability. However, large-scale distributed systems are becoming more andmore complex, and the number of system logs gradually increases, which bringschallenges to analyze system logs. Some recent studies show that logs can beunstable due to the evolution of log statements and noise introduced by log collection and parsing. Moreover, deep learning-based detection methods take a longtime to train models. Therefore, to reduce the computational cost and avoid loginstability we propose a new Word2Vec-based log unsupervised anomaly detection method (LogUAD). LogUAD does not require a log parsing step and takesoriginal log messages as input to avoid the noise. LogUAD uses Word2Vec togenerate word vectors and generates weighted log sequence feature vectors withTF-IDF to handle the evolution of log statements. At last, a computationally effi-cient unsupervised clustering is exploited to detect the anomaly. We conductedextensive experiments on the public dataset from Blue Gene/L (BGL). Experimental results show that the F1-score of LogUAD can be improved by 67.25%compared to LogCluster. 展开更多
关键词 Log anomaly detection log instability word2Vec feature extraction
下载PDF
A VMIMO-Based Cooperative Routing Algorithm for Maximizing Network Lifetime 被引量:1
6
作者 Ji Zhang Dafang Zhang +2 位作者 Kun Xie Hong Qiao shiming he 《China Communications》 SCIE CSCD 2017年第4期20-34,共15页
Energy efficiency is an important criterion for routing algorithms in the wireless sensor network. Cooperative routing can reduce energy consumption effectively stemming from its diversity gain advantage. To solve the... Energy efficiency is an important criterion for routing algorithms in the wireless sensor network. Cooperative routing can reduce energy consumption effectively stemming from its diversity gain advantage. To solve the energy consumption problem and maximize the network lifetime, this paper proposes a Virtual Multiple Input Multiple Output based Cooperative Routing algorithm(VMIMOCR). VMIMOCR chooses cooperative relay nodes based on Virtual Multiple Input Multiple Output Model, and balances energy consumption by reasonable power allocation among transmitters, and decides the forwarding path finally. The experimental results show that VMIMOCR can improve network lifetime from 37% to 348% in the medium node density, compared with existing routing algorithms. 展开更多
关键词 wireless sensor network(WSN) cooperative routing VMIMO maximizing network lifetime power allocation
下载PDF
Electrical Data Matrix Decomposition in Smart Grid 被引量:1
7
作者 Qian Dang Huafeng Zhang +3 位作者 Bo Zhao Yanwen he shiming he Hye-Jin Kim 《Journal on Internet of Things》 2019年第1期1-7,共7页
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ... As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme. 展开更多
关键词 Electrical data recovery matrix decomposition low-rankness smart grid
下载PDF
生物大分子相分离领域的研究进展回顾与展望
8
作者 何世明 王实 吝易 《科学通报》 EI CAS CSCD 北大核心 2024年第30期4486-4499,共14页
蛋白质和核酸等生物大分子通过相分离在细胞特定区域富集,形成无生物膜包被的生物分子凝聚体,也称无膜细胞器,为细胞实现了精细区室化.生物大分子相分离由分子间复杂而又特异的多价相互作用驱动,所形成的无膜细胞器具有独特的物理特性,... 蛋白质和核酸等生物大分子通过相分离在细胞特定区域富集,形成无生物膜包被的生物分子凝聚体,也称无膜细胞器,为细胞实现了精细区室化.生物大分子相分离由分子间复杂而又特异的多价相互作用驱动,所形成的无膜细胞器具有独特的物理特性,如流动性、融合与分裂能力、表面张力等.将相分离理论引入生物学研究,为深入理解生命活动的分子机制提供了新颖的视角.近年来的研究揭示了生物大分子相分离在众多基本生物过程中的作用,包括稳定染色质结构、调节基因表达、调控RNA加工、成熟及蛋白质翻译等.此外,相分离动态灵活的特征也使其成为细胞响应内外信号刺激,以及不同细胞类型维持特异亚细胞结构的一种重要方式.本综述回顾了从生物大分子相分离发现至今的研究进展:首先概述了无膜细胞器的早期研究历史,旨在梳理相分离理论引入前无膜细胞器的研究脉络;其次探讨了相分离的分子机制及生物分子凝聚体的理化性质,阐释了串联重复结构域和内在无序区域介导的两种相分离发生机制,并引申出其理化性质与生物功能的相关性;后续重点讨论了无膜细胞器的众多生物学功能,突出了无膜细胞器在不同细胞不同环境中功能的多样性和特异性;最后总结了相分离领域内亟需回答的问题,并展望了未来领域在成分分析、基础理论、细胞功能、疾病关系、药物开发以及新技术应用等方面的研究前景. 展开更多
关键词 生物大分子相分离 生物分子凝聚体 多价相互作用 无膜细胞器
原文传递
Advances and challenges in the treatment of esophageal cancer 被引量:34
9
作者 shiming he Jian Xu +1 位作者 Xiujun Liu Yongsu Zhen 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2021年第11期3379-3392,共14页
Esophageal cancer(EC)is one of the most common cancers with high morbidity and mortality rates.EC includes two histological subtypes,namely esophageal squamous cell carcinoma(ESCC)and esophageal adenocarcinoma(EAC).ES... Esophageal cancer(EC)is one of the most common cancers with high morbidity and mortality rates.EC includes two histological subtypes,namely esophageal squamous cell carcinoma(ESCC)and esophageal adenocarcinoma(EAC).ESCC primarily occurs in East Asia,whereas EAC occurs in Western countries.The currently available treatment strategies for EC include surgery,chemotherapy,radiation therapy,molecular targeted therapy,and combinations thereof.However,the prognosis remains poor,and the overall five-year survival rate is very low.Therefore,achieving the goal of effective treatment remains challenging.In this review,we discuss the latest developments in chemotherapy and molecular targeted therapy for EC,and comprehensively analyze the application prospects and existing problems of immunotherapy.Collectively,this review aims to provide a better understanding of the currently available drugs through in-depth analysis,promote the development of new therapeutic agents,and eventually improve the treatment outcomes of patients with EC. 展开更多
关键词 Drug combination Esophageal adenocarcinoma Esophageal squamous cell carcinoma Immune therapy Molecular targeted therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部