Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source ...Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source materials.The chemical composition and structure of the catalysts was characterized by FT-IR,XRD,SEM,TEM,and XPS.The XPS characterization indicated that Ti_(3)C_(2)was partially oxidized to TiO_(2)during the composite process.As a result,an efficient direct-Z-scheme heterojunction structure consisting of the g-C_(3)N_(4)and TiO_(2)with Ti_(3)C_(2)as an electron bridge was constructed.The photocatalytic performance of the prepared catalysts was evaluated by degrading the Rhodamine B(RhB)wastewater.Compared with the single g-C_(3)N_(4),the g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)composite photocatalyst exhibited efficient and stable photocatalytic degradation ability,with a degradation efficiency as high as 99.2%for RhB under optimal conditions(2%Ti_(3)C_(2),pH=3).The high degradation performance of g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)for RhB was attributed to the combination of Ti_(3)C_(2),TiO_(2),and g-C_(3)N_(4)components,forming a direct-Z-scheme heterojunction with a high-speed electron transport channel structure.The role of Z-scheme heterojunctions in electron transport is verified by photoelectrochemical characterization,along with photoluminescence(PL).Our research provides a simple method to design photocatalysts by constructing direct-Z-scheme electron transport channels for highly efficient treatment of dye wastewater.展开更多
We experimentally investigate the linear polarization conversion for terahertz(THz)waves in liquid crystal(LC)integrated metamaterials,which consist of an LC layer sandwiched by two orthogonally arranged sub-wavelengt...We experimentally investigate the linear polarization conversion for terahertz(THz)waves in liquid crystal(LC)integrated metamaterials,which consist of an LC layer sandwiched by two orthogonally arranged sub-wavelength metal gratings.A Fabry-Perot-like cavity is well constructed by the front and rear gratings,and it shows a strong local resonance mechanism,which greatly enhances the polarization conversion efficiency.Most importantly,the Fabry-Perot-like resonance can be actively tuned by modulating the refractive index of the middle LC layer under the external field.As a result,the integrated metamaterial achieves multi-band tunable linear polarization conversion.展开更多
The nonreciprocal circular dichroism and Faraday rotation effect for terahertz(THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated ...The nonreciprocal circular dichroism and Faraday rotation effect for terahertz(THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated its ability for a THz circularly polarized isolator, THz circular polarizer, tunable polarization converter, and polarization modulator by manipulation of different magnetic fields. Furthermore, we demonstrated the InSb plasmonics based on its magneto-optical effects combined with artificial microstructure. We found the magnetooptical enhancement mechanisms in this magneto-plasmonic structure, achieving broadband near-perfect orthogonal linear polarization conversion modulated by the weak magnetic field in an experiment with an extinction ratio of 33 dB. Moreover, the magneto-optical modulation with an amplitude modulation depth of 95.8% can be achieved by this device under a weak magnetic field of 150 mT. InSb and its magneto-plasmonic device have broad potential for a THz isolator, magneto-optical modulator, and polarization convertor in THz application systems.展开更多
基金supported by the National Natural Science Foundation of China(22078138)the Natural Science Foundation of Jiangxi Province(20202ACBL203009).
文摘Direct-Z-scheme g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)photocatalyst with giant internal electric field was prepared by onestep aqueous sonication self-assembly method using g-C_(3)N_(4)and MXene of Ti_(3)C_(2)as the source materials.The chemical composition and structure of the catalysts was characterized by FT-IR,XRD,SEM,TEM,and XPS.The XPS characterization indicated that Ti_(3)C_(2)was partially oxidized to TiO_(2)during the composite process.As a result,an efficient direct-Z-scheme heterojunction structure consisting of the g-C_(3)N_(4)and TiO_(2)with Ti_(3)C_(2)as an electron bridge was constructed.The photocatalytic performance of the prepared catalysts was evaluated by degrading the Rhodamine B(RhB)wastewater.Compared with the single g-C_(3)N_(4),the g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)composite photocatalyst exhibited efficient and stable photocatalytic degradation ability,with a degradation efficiency as high as 99.2%for RhB under optimal conditions(2%Ti_(3)C_(2),pH=3).The high degradation performance of g-C_(3)N_(4)/Ti_(3)C_(2)/TiO_(2)for RhB was attributed to the combination of Ti_(3)C_(2),TiO_(2),and g-C_(3)N_(4)components,forming a direct-Z-scheme heterojunction with a high-speed electron transport channel structure.The role of Z-scheme heterojunctions in electron transport is verified by photoelectrochemical characterization,along with photoluminescence(PL).Our research provides a simple method to design photocatalysts by constructing direct-Z-scheme electron transport channels for highly efficient treatment of dye wastewater.
基金supported by the National Natural Science Foundation of China (Nos. 62005143, 61831012, and 61971242)the Natural Science Foundation of Tianjin (No. 19JCYBJC16600)the Young Elite Scientists Sponsorship Program by Tianjin (No. TJSQNTJ-2017-12)
文摘We experimentally investigate the linear polarization conversion for terahertz(THz)waves in liquid crystal(LC)integrated metamaterials,which consist of an LC layer sandwiched by two orthogonally arranged sub-wavelength metal gratings.A Fabry-Perot-like cavity is well constructed by the front and rear gratings,and it shows a strong local resonance mechanism,which greatly enhances the polarization conversion efficiency.Most importantly,the Fabry-Perot-like resonance can be actively tuned by modulating the refractive index of the middle LC layer under the external field.As a result,the integrated metamaterial achieves multi-band tunable linear polarization conversion.
基金National Key Research and Development Program of China(2016YFC0101002,2017YFA0701000)National Natural Science Foundation of China(NSFC)(61671491,61831012)Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-12)
文摘The nonreciprocal circular dichroism and Faraday rotation effect for terahertz(THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated its ability for a THz circularly polarized isolator, THz circular polarizer, tunable polarization converter, and polarization modulator by manipulation of different magnetic fields. Furthermore, we demonstrated the InSb plasmonics based on its magneto-optical effects combined with artificial microstructure. We found the magnetooptical enhancement mechanisms in this magneto-plasmonic structure, achieving broadband near-perfect orthogonal linear polarization conversion modulated by the weak magnetic field in an experiment with an extinction ratio of 33 dB. Moreover, the magneto-optical modulation with an amplitude modulation depth of 95.8% can be achieved by this device under a weak magnetic field of 150 mT. InSb and its magneto-plasmonic device have broad potential for a THz isolator, magneto-optical modulator, and polarization convertor in THz application systems.